THANK YOU for buying a Kona. A bicycle is a wonderful tool for transportation and recreation. We hope that you will ride it often and have a great deal of use and enjoyment from your purchase. This manual contains important safety, performance and maintenance information.

IMPORTANT: Read this manual before taking your first ride on your new bicycle, and keep this manual handy for future reference.

NOTE: This manual is not intended as a comprehensive use, service repair or service manual. Please see your dealer for all service, repairs or maintenance. Your dealer may also be able to refer you to classes, clinics or books on bicycle use, service or maintenance.

ABOUT THIS MANUAL: This owner's manual was prepared with your safety as our first consideration. A great deal of the text was prepared by a group of US-based bicycle manufacturers and distributors. Those sections are copyrighted by Kona Bicycle Company and the other companies using the same text, and may not be reproduced without the written consent of Kona Bicycle Company.
In addition to safety, many bicycle manufacturers and distributors are concerned with the alarming number of product liability cases brought forwards over the last 5 years. Because American and Canadian attorneys are entitled to mount these cases on a contingency basis, many larger manufacturers and distributors have been marked as deep pocket targets for what in many cases, turn out to have been the responsibility of the bicycle rider. Even the most frivolous cases are costly to the manufacturer and distributor, which additionally result in higher insurance premiums, and eventually, higher bicycle prices. The Consumer Product and Safety Commission has undertaken a variety of studies that find that, for the most part, bicycles are well-made and safe vehicles.

These studies conclude that many serious and minor accidents could be prevented by the use of helmets. It should also be noted that ACCIDENTS CAN ALSO BE PREVENTED BY PROPER INSTRUCTION OF BICYCLE USE AND MAINTENANCE. Your Kona dealer will provide you with basic instructions to get you safely started. In addition, we strongly recommend that YOU READ THIS ENTIRE MANUAL PAYING PARTICULAR ATTENTION TO WARNINGS AND CAUTIONS.
So hang in there while you wade through the legalese. Yes we are trying to protect ourselves against unreasonable lawsuits, but we are concerned about your safety. That is why we add a great deal of general and Kona-specific information about safe and enjoyable cycling instead of blandly reproducing a generic owner's manual.
Kona was started in 1988 by a group of cyclists dedicated to producing high-quality custom bikes based on our longtime experience in the sport and business of cycling. Kona's headquarters are located in the temperate rain forest of the Pacific Northwest region of the United States and Canada - an area that is ideal for developing and testing durable bicycles that provide superior performance. The Kona Design Group within our company, is responsible on a day-to-day basis for testing new frames and components that are worthy of being incorporated into our bicycles. We believe in constantly improving and refining our bicycles and components and welcome your comments and complaints. We believe that giving good service to our customers is just as important as designing and making good bicycles. It is our mission to help make your cycling experiences safe and enjoyable and part of that mission is to make it possible for you to do that as frequently as possible. If for any reason you are not satisfied with the quality of any part of your bicycle or the service given to you by Kona or one of our dealers, please let us know.

Like any sport, bicycling involves risk of injury and
damage. By choosing to ride a bicycle, you assume damage. By choosing that risk, so you, need to know -
the responsibility for thet
and to practice - the rules of safe and responsible riding and to practice - the rules of safe and responsible
and of proper use and maintenance. Proper use and
maintenance of your bicycle reduces risk of injury. This Manual contains many "Warnings" and "Cautions" This Manual contains many "Warnings" and "caution
concerrning the consequences of failure to maintain
or inspect your bicycle and of failure to follow safe or inspect your b
cycling practices.

- The combination of the safety alert symbol and the word WARNING indicates a potentially hazardous situation which,
injury or death.
- The combination of the safety alert symbol and the word CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or is an alert against unsafe practices. - The word CAUTION used without the safety alert - The word CAUTION used without the safety alert
symbol indicates a situation which, if not avoided, could
result in serious damage to the bicycle or the voiding of result in serio
your warranty
Many of the Warnings and Cautions say "you may lose control and evan death, we do ont always repeat the
injury or
warning of possible injury or death. Because it is impossible to anticipate every situation or
condition which can occur while riding, this Manual makes
no representation about the safe use of the bicycle under no representation about the safe use of the bicycle under
all conditions. There are risks associated with the use of

A Special Note for Parents

A WARNING: This manal does not cover Juvenile or BMX

 bicycles.As a parent or guardian, you are responsible for the activities and safety of your minor child, and that includes
making sure that the bicycle is properly fitted to the child; making sure that the bicycle is properly itted to the child,
that it is in good repair and safe operating condition; that
you and your child have learned and understand the safe you and your child have learned and understand the safe
operation of the bicycle; and that you and your child have learned, understand and obey not only the applicable
local motor vehicle, bicycle and traffic laws, but also the local motor vehicle, bicycle and traffic laws, but also the
common sense rules of safe and responsible bicycling. As a parent, you should read this manual, as well as review its warnings and the bicycle's functions and
operating procedures with your child, before letting your operating procedures
child ride the bicycle.
A WARNING: Make sure that your child always wears an approved bicycle helmet when riding; but also make
sure that your child understands that a bicycle helmet in sure that your child understands that a bicycle helmet is A helmet must not be worn while playing, in play areas,
on playground equipment, while climbing trees, or at
any time while not riding a bicycle. Failure to follow this any time while not riding a bicycle. Failure to fo
warning could result in serious injury or death

1. FIRST - BEFORE YOU RIDE

NOTE: We strongly urge you to read this Manual in its entirety before your first ride; but at the very least,
read and make sure that you understand each point in this section, and refer to the cited sections on any issue which you don't completely understand. Please note that not all bicycles have all of the features
described in this Manual. Ask your dealer to point out described in this Manual. As
the features of your bicycle.

A) BIKE FIT

1. Is your bike the right size? To check, see Section 3.A. If your bicycle is too large or too small for you, you may
lose control and fall. If your new bike is not the right size, losk your dealer to exchange it before you ride it.
2. Is the saddle at the right height? To check, see Section 3. B. If you adjust your saddle height, make sure that you
follow the Minimum Insertion instructions in Section 3.B.
3. Are saddle and seatpost securely clamped? A correctly
tightened saddle will allow no saddle movement in any tightened saddle will allow no saddle
direction [see Section 3.8 for details].
4. Are the stem and handlebars at the right height for
you? If not, see Section $3 . C$ on what you can do about it. 5. Can you comfortably operate the brakes? If not, you may be able to adjust th
3.D and 3.E for details].
5. Do you fully understand how to operate your new b. Dclle? If not, before your first ride, have your
dealer explain any functions or features which you dealer explain any f
do not understand.
B) SAFETY FIRST!
6. Always wear an approved helmet when riding your bike, and follow the helmet manufa
for fit, use and care of your helmet.
7. Do you have all the other required and recommended safety equipment? See Section 2 . It's your responsibility to familiarize yourself with the laws of the areas where
you ride, and to comply with all applicable laws.
8. Do you know how to correctly secure your front an
rear wheels? Check Section 4.A. 1 to make sure. Ridin
rear wheels? Check Section 4.A. 1 to make sure. Riding with an improperly adjusted wheel quick release can
cause the wheel to wobble or disengage from the bicycle, cause the wheel to wobble or dise
and cause serious injury or death.
9. If your bike has toeclips and straps or clipless "step-in" pedals, make sure you know how they work [see Section 4.E]. These pedals require special techniques and skills. Follow the pedal man
adjustment and care. 5. Does your bike have suspension? If so, check Section
4.F. Suspension can change the way a bicycle performs. Follow the suspension manufacturer's instructions for use adjustment and care.
10. Do you have "toe overlap"? On smaller framed bicycles your toe or toeclip may be able to contact the front wheel when a pedal is all the way forward and the wheel
is turned. Read Section 4.E. to check whether you have is turned. Read
toeclip overlap.

Make sure nothing is loose. Lift the front wheel off the ground by two or three inches, then let it bounce on the
ground. Anything sound, feel or look loose? Do a visual ground. Anything sound, feel or look loose? Do a visual
and tactile inspection of the whole bike. Any loose parts
and or accessories? If so, secure them. I
someone with experience to check.

Tires \& Wheels: Make sure tires are correctly inflated
[see Section 4.H.1]. Check by putting one hand on the
saddle, one on the intersection of the handlebars and saddle, one on the intersection of the handlebars and
stem, then bouncing your weight on the bike while
looking at tire deflection. Compare what you see with how it looks when you know the tires are correctly inflated;
and adjust if neessary. Tires in good shape? Spin each
wheel slowly and look for cuts in the tread and sidewall. wheel slowly and look. for cuts in the thead and sidewall.
Replace damaged tires before riding the bike. Whels Replace damaged tires before riding the bike. Wheels
true? Spin each wheel and check for brake clearance and true? Spin each wheel and check for brake clearance and
side-to-side wobble. If a wheel wobbles side to side even
slightly, or rubs against or hits the brake pads, take the slightly, or rubs against or hits the brake pads, take the
bike to a qualified bike shop to have the wheel trued.
A CAUTION: Wheels must be true for the brakes to work effectively. Wheel truing is a skill which requires
special tools and experience. Do not attempt to true a special tools and experience. Do not attempt to true a wheel unless you have the knowledge,
tools needed to do the job correctly.
Wheel rims clean and undamaged? Make sure the rims
are clean and undamaged at the tire bead and, if you are clean and undamaged at the tire bead and, if you
have rim brakes, along the braking surface. Check to
make sure that any rim wear indicator marking is not make sure that any rim wear indicator
Ask WARNING: Bicycle wheel rims are subject to wear Ask your dealer about wheel rim wear. Some wheel
rims have a rim wear indicator which becomes visible
as the rim's braking surface wears. A visible rim wear
indicator on the side of the wheel rim is an indication that the wheel rim has reached its maximum usable
life. Riding a wheel that is at the end of its usable life life. Riding a wheel that is at the end of its usable life
can result in wheel failure, which can cause you to lose
control and fall.
Brakes: Check the brakes for proper operation (see
Sections 4.C). Squeeze the brake levers. Are the brake quick-releases closed? All control cables. Areated and
securely engaged? If you have rime securely engaged? If you have rim brakes, do the brake
pads contact the wheel rim squarely and make full contact pads contact the wheel rim squarely and make full contact
with the rim? Do the brakes begin to engage within an inch
of brake lever movement? Can you apply full braking force of brake lever movement? Can you apply full braking force
at the levers without having them touch the handlebar? at the levers without having them touch the handlebar?
If not, your brakes need adjustment. Do not ride the If not, your brakes need adjustme
bike until the brakes are prope
professional bicycle mechanic

Wheel retention system: Make sure the front and rear wheels are correctly secured. See Section 4.A
Seat post: If your seat post has an over-center cam a Seat post: If your seat post has an over-center cam action adjusted and in the locked position. See Section 4.B. Handlebar and Saddle Alignment: Make sure the
saddle and handlebar stem are parallel to the bike's saddle and handlebar stem are parale to the bike's
center line and clamped tight enough so that you can't
twist them out of alignment [see Sections 3.B and 3.C]. twist them out of alignment [se
If not, align and tighten them.
Handlebar Ends: Make sure the handlebar grips are
secure and in good condition, with no cuts, tears, or worn secure and in good condition, with no cuts, tears, or worn
out areas. If not, have your dealer replace them. Make out areas. If not, have your dealer replace them. Make
sure the handlebar ends and extensions are plugged. If
not, have your dealer plug them before you ride. If the not, have your dealer plug them before you ride. If the
handlebars have bar end extensions, make sure they are clamped tight enough so you can't twist them.

A warning: Loose or damaged handieab grip or extensions can cause you to olose control and fall. Un-
plugged handelears or extensions can cut your body, and can cause serious injury in an otherwise minor
accident.
VERY IMPORTANT SAFETY NOTE: Please also read and become thoroughly familiar with the important components in Appendix B on Page 38 .

D) FIRST RIDE

When you buckle on your helmet and go for your first familiarization ride on your new bicycle, be sure to pick a controlled environment, away from cars, other cyclists,
obstacles or other hazards. Ride to become familiar with obstacles or other hazards. Ride to become familiar with
the controls, features and performance of your new bike. Familiarize yourself with the braking action of the bike Familiarize yourself with the braking action of the bike
[see Section 4.C]. Test the brakes at slow speed, puttee
ting your weight toward the rear and gently applyingt the
brakes, rear brake first. Sudden or excessive aplication ting your weight toward the rear and gently applying the
brakes, rear brake first. Sudden or excessive application
of the front brake could pitch you over the handlebars. of the front brake could pitch you over the handlebars.
Applying brakes too hard can lock up a wheel, which could cause you to lose control and fall. Skidding is an example
of what can happen when a wheel locks up. If your bicycle has toeclips or clipless pedals, practice
getting in and out of the pedals. See paragraph B. 4 above getting in and out of the pedals. See paragraph B. 4 above
and Section 4.E.4.
If your bike has suspension, familiarize yourself with how the suspension responds to brake application and
weight shifts [see Section 1.B. 5 and Section 4.F]. Practice shifting the gears [see Section 4.D]. Remember

This could backwards after having moved the shifter. the bicycle.
A Check out the handling and response of the bike; and
check the comfort.
If you have any questions, or if you feel anything
about the bike is not as it should be, take the bike about the bike is not as it should be, take
back to your dealer before you ride again.
2. SAFETY
A) THE BASICS

WARNING: The area in which you ride may require specific safety devices. It is your
responsibility to familiarize yourself with the laws of the area where yourside and to comply with all applicable laws, including
properly equipping yourself and your bike properly equipping yourself and your bike
as the law requires. Observe all local bicycle
laws and requlations. Observe regulations aws and regulations. Observe regulations laws, child carrier laws, special bicycle traffic laws. It's your responsibility to know and obey the laws.

1. Always wear a cycling helmet which meets the latest
certification standards and is appropriate for the type of riding you do. Always follow the helmet manufacturer's instructions for fit, use and care of your helmet. Most
serious bicycle injuries involve head injuries which might have been avoided if the rider had worn an appropriate
helmet.
A. WARNING: Failure to wear a helmet when riding
may result in serious injury or death. may result in serious injury or death
2. Always do the Mechanical Safety Check before you 3. Be thoroughly familiar with the controls of your bicycle: brakes [see Section 4.C]; ; pedals [see Section 4.E];
shifting [see Section 4.D]. 4. Be careful to keep body parts and other objects away from the sharp teeth of chainrings; the moving chain; the
turning pedals and cranks; and the spinning wheels of turning pedals
your bicycle.
3. Always wear

- Shoes that will stay on your feet and will grip the pedals. Make sure that side eaces cannot get into moving parts, and never ride barefoot or while wearing
- Bright, visible clothing that is not so loose that it can be tangled in the bicycle or snagged by objects at the side
of the road or trail. of the road or trail.
- Protective eyewear, to protect against airborne dirt,
dust and bugs - tinted when the sun is bright dust and
it's not.

6. Unless your bicycle was specifically designed for jumping
(See Appendix A. Intended Use) don't jump with your bike (See Appendix A, Intended Use) don't jump with your bike.
Jumping a bike, particularly a BMX or mountain bike, can be fun; but it can put huge and unpredictable stress on the bicycle and its components. Riders who insist on jumping their
bikes risk serious damage, to their bicycles as well as to bikes risk serious damage, to their bicycles as well as to
themselves. Before you attempt to jump, do stunt riding
or race with your bike, read and understand Section 2.F. 7. Ride at a speed appropriate for conditions. Higher
speed means higher risk.

B) RIDING SAFETY

1. Obey all Rules of the Road and all local traffic laws. 2. You are sharing the road or the path with others
motorists, pedestrians and other cyclists. Respect motorists, p .
2. Ride defensively. Always assume that others do not see you.
3. Look ahead, and be ready to avoid

- Vehicles slowing or turning, entering the road or your
lane ahead of you, or coming up behind you.
- Parked car doors opening
- Pedestrians stepping out
- Children or pets playing near the road.
- Pot holes, sewer grating, railroad tracks, expansion
joints, road or sidewalk construction, debris and joints, road or sidewalk construction, debris and other
obstructions that could cause you to swerve into traffic, catch your wheel or otherwise cause you to lose control
and have an accident.
- The many other hazards and distractions which can 5. Ride in designated bike lanes, on designated bike paths
or as close to the edge of the road as possible, in the
direction of traffic flow or direction of traffic flow or as directed by local governing laws.

6. Stop at stop signs and traffic lights; slow down and
look both ways at street intersections. Remember that lok both ways at street intersections. Remember that a
bicycle always loses in a collision with a motor vehicle, bicycle always loses in a collision with a motor vehicle,
so be prepared to yield even if you have the right of way. 7. Use approved hand signals for turning and stopping. 8. Never ride with headphones. They mask traffic sounds and
on what's going on around you, and their wires can tangle in
the moving parts of the bicycle, causing you to lose contro 9. Never carry a passenger; and, before installing a child carrier or trailer, check with your dealer or the bicycle manufacturer to make sure the bicycle is designed for it.
If the bicycle is suitable for a child carrier or trailer, make If the bicycle is suitable for a child carrier or trailer, mak.
sure that the carrier or trailer is correctly mounted and
the child is secured and wearing an approved helmet. 10. Never carry anything which obstructs your vision or your complete control of the bicycle, or which could
become entangled in the moving parts of the bicycle
7. Never hitch a ride by holding on to another vehicle
8. Don't do stunts, wheelies or jumps. If you intend to do stunts, wheelies, jumps or go racing with your bike despite our advice not to, read Section 2.F, Downhill,
Stunt or Competition Biking, now. Think carefully abou Stunt or Competition Biking, now. Think carefully about
your skills before deciding to take the large risks that go
with this kind of riding with this kind of riding
9. Don't weave tro
10. Don't weave through traffic or make any moves may surprise people with whom you are sharing the road 14. Observe and yield the right of way
11. Never ride your bicycle while under the influence of alcohol or drugs.
12. If possible, avoid riding in bad weather, when visibility is obscured, at dusk or in the dark, or when
extremely tired. Each of these conditions increases the
risk of accident.
C) OFF ROAD SAFETY

We recommend that children not ride on rough terrain accompanied by an adult.

1. The variable conditions and hazards of off-road riding
require close attention and specific skills. Start slowly on
easier terrain and build up your skills. If your bike has suspension, the increased speed you may develop also
increases your risk of losing control and falling. Get to ncreases your hisk of losing control and falling. Get
know how to handle your bike safely before trying know how to handle your bike safely befor
increased speed or more difficult terrain.
2. Wear safety gear appropriate to the kind of riding you
3. Don't ride alone in remote areas. Even when riding with others, make sure that someone knows where you'r
going and when you expect to be back.
4. Always take along some kind of identification, so that
people know who you are in case of an accident; along some cash for food, a cool drink or an emergency along some
5. Yield right of way to pedestrians and animals. Ride in a way that does not frighten or endanger them, and give them enough
endanger you
6. Be prepared. If something goes wrong whil you'r 6. Be prepared. If something goes wro
riding off-road, help may not be close.
7. Before you attempt to jump, do stunt riding or race
with your bike, read and understand Section 2.F.

Off Road Respect
Obey the local laws regulating where and how you can
ride off-road and respect private property You may be rharing- road, and respect private property. You may be
shail with others - hikers, equestrians, other cyclists. Respect their rights. Stay on the designated
trail. Don't contribute to erosion by riding in mud or with unnecessary sliding. Don't disturb the ecosystem by cutting your own trail or shortcut through vegetation or
streams. It is your responsibility to minimize your impact
on the environment. Leave things as you found them

D) WET WEATHER RIDING

A WARNING: Wet weather impairs traction, braking and visibiity, both for the bicyclist and for other dramatically increased in wet conditions.
Under wet conditions, the stopping power of your brakes
(as well as the brakes of other vehicles sharing the road (as well as the brakes of other vehicles sharing the road
is dramatically reduced and your tires don't grip nearly as well. This makes it harder to control speed and easier to lose control. To make sure that you can slow down and
stop safely in wet conditions, ride more slowly and apply your brakes earlier and more gradually than you would under normal, dry conditions [see also Section 4.C].

E) NIGHT RIDING

Riding a bicycle at night is much more dangerous than
riding during the day. A bicyclist is very difficult for riding during the day. A bicyclist is very difficult for
motorists and pedestrians to see. Therefore, children motorists and pedestrians to see. Therefore, children who chose to accept the greatly increased risk of riding
at dawn, at dusk or at night need to take extra care both riding and choosing specialized equipment which are bot riding and choosing specialized equipment which helps
reduce that risk. Consult your dealer about night riding safety equipment.
A WARNING: Reflectors are not a substitute for required lights. Riding at dawn, at dusk, at night or at other times of poor visibility without an adequate bicycle lighting system and without reflectors is
dangerous and may result in serious injury or death.

Bicycle reflectors are designed to pick up and reflect street lights and car lights in a way that may
be seen and recognized as a moving bicyclist.
A CAUTION: Check reflectors and their mounting brackets regularly to make sure that they are clean,
straight, unbroken and securely mounted. Have you straight, unbroken and securely mounted. Have your tighten any that are bent or loose.

The mounting brackets of front and rear reflectors are
often designed as brake straddle cable safety catches which prevent the straddle cable from catching on the tire which prevent the straddle cable from catching on
tread if the cable jumps out of its yoke or breaks.
A WARNING: Do not remove the front or rear They are an integral part of the bicycle's bafety. system. Removing the reflectors reduces your visibility to others using the readway. Being struck by other vehicles may result in serious injury or death. Th reflector brackets may protect you from a brake
straddle cable catching on the tire in the event of brake cable failure. If a brake straddle cable catches
on the tire, it can cause the wheel to stop suddenly, on the tire, it can cause the wheel to
causing you to lose control and fall.
If you choose to ride under conditions of poor visibility, check and be sure you comply with all local laws about
night riding, and take the following strongly recommend
ed additional night riding, and take the
ed additional precautions:

- Purchase and install battery or generator powered head
and tail lights which meet all regulatory requirements and provide adequate visibility
such as a reflective vest, reflective arm and leg bands, reflective stripes on your helmet, flashing lights
attached to your body and/or your bicycle ... an
get the attention of approaching motorists, pedestrians
get the attention
Make sure your clothing or anything you may be
carrying on the bicycle does not obstruct a reflector or carryi
light. Make sure that your bicycle is equipped with correctly
positioned and securely mounted reflectors.
While riding at dawn, at dusk or at night:
- Ride slowly. - Avoid road hazards.
- If possible, ride on familiar routes
- Be predictable. Ride so th
predict your movements.
Be art. Ride defensively and expect the unexpected If you plan to ride in traffic often, ask your dealer
about traffic safety classes or a good book on bicycle traffic safety.
F) EXTREME, STUNT OR COMPETITION RIDING Whether you call it Aggro, Hucking, Freeride, North Shore, if you engage in this sort of extreme, aggressive riding you
will get hurt, and you voluntarily assume an increased risk if you engage in this sort of extreme, aggressive riding you
will get hurt, and you voluntarily assume an increased risk
of injury or death. of injury or death.
Not all bicycles are designed for these types of riding,
and those that are may not be suitable for all types of
aggressive riding. Check with your dealer or the bicycle's engaging in extreme riding.
When riding fast down hill, you can reach speeds seen on
motorcycles, and therefore face similar hazards and risks, motorcycles, and therefore face similar hazards and risks.
Have your bicycle and equipment carefully inspected by Have your bicycle and equipment carefully inspected by a
qualified mechanic and be sure it is in perfect condition. Consult with expert riders and race officials on conditions and equipment advisable at the site where you plan to ride. Wear appropriate safety gear, including an approved full
face helmet, full finger gloves, and body armor. Ultimate face helmet, full inger gloves, and body armor. Ultimately,
it is your responsibility to have proper equipment and to be
familiar with course conditions.
A WARNING: Although many catalogs,
advertisements and articles about bicycling depict
riders engaged in extreme riding, this activity is extremely dangerous, increases your risk of injury
or death, and in or death, and increases the severity of any injury.
Remember that the action depicted is being performed Remember that the action depicted is being perfor
by professionals with many years of training and
experience. Know your limits and always wer experience. Know your limits and always wear a
helmet and other appropriate safety gear. Even with state-of-the-art protective safety gear, you could be seriously iding downill at speed or in competition.
A CAUTION: Bicycles and bicycle parts have limitations with regard to strength and integrity,
this type of riding can exceed those limitations or
dramatically reduce the length of their safe use.
We recommend against this type of riding because of the
increased risks; but if you choose to take the risk, at least: - Take lessons from a competent instructor first.

Start with easy learning exercises and slowly develop your s - Use only designated areas for stunts, jumping, racing or - Wear a full face helmet, safety pads and othe Wear a full f
safety gear.

- Understand and recognize that the stresses imposed on Understand and recognize that the stresses imposed on
your bike by this kind of activivy may break or damage
parts of the bicycle and void the warranty. Take your bicycle to your dealer if anything breaks
or bends. Do not ride your bicycle when any part is
damaged. or bends.
damaged.
If you ride downhill at speed, do stunt riding or ride in competition, know the limits of your skill and experience.

G) CHANGING COMPONENTS OR

ADDING ACCESSORIES

There are many components and accessories available your bicycle. However, if you change components or add accessories, you do so at your own risk. The bicycle's
manufacturer may not have tested that component or manufacturer may not have tested that component or
accessory for compatibility, reliability or safety on your
bicycle. Before installing any component or accessory, accessory for compatibility, reliability or safety on you
bicylcle. Before installing any component or accessory,
including a different size tire, make sure that it is including a different size tire, make sure that it is
compatible with your bicycle by checking with your dealer. compatible with your bicycle by checking with your deal that accompany the products you purchase for your
ticycle. See also Appendix A, p. 33 and B, p. 38 .

A WARNING: Failure to confirm compatibility, or accessory can result in serious injury or death.
A CAUTION: Changing the components on your bike may void the warranty. Refer to your warra and check with your deal
components on your bike.

3. FIT

NOTE: Correct fit is an essential element of bicycling safety, performance and comfort. Making the adjustments to your bicycle which result in correc fit for your body and riding conditions requires experience, skill and special tools. Always have your
dealer make the adjustments on your bicycle; or, if you have the experience, skill and tools, have your dealer check your work before riding
A WARNING: If your bicycle does not fit properly,
you may lose control and fall. If your new bike doesn't you may lose control and fall. If your new bike doesn't

A) STANDOVER HEIGHT

1. Diamond frame bicycles

Standover height is the basic element of bike fit. It is
the distance from the ground to the top of the bicycle's
the dover height is the the gasicund toment the top of the bit. It icccle's
frame at that point where your crotch is when straddling frame at that point where your crotch is when straddlin
the bike. To check for correct standover height, straddle
the bike while wearing the kind of shoes in which you'l the bike while wearing the kind of shoes in which you'll crotch touches the frame, the bike is too big for you. Don't even ride the bike around the block. A bike which
you ride only on paved surfaces and never take off-road
should give you a minimum
two inches $(5 \mathrm{~cm})$.
A bike that youllt ride on
unpaved surfaces should give you a minimum of
three inches (7.5 cm) of standover height clearance
And a bike that you'll use And a bike that you'll use
off road should give you off road should give you
four inches (10 cm) or
more of clearance.
2. Step-through frame bicycles
Standover height does

B) SADDLE POSITION

Correct saddle adjustment is an important factor in getting the most performance and comfort from your see your dealer, who has the tools and skill to change it. The saddle can be adjusted in three directions

1. Up and down adjustment. To check for correct saddle height [Fig. 3]:

- place one heel on
- rotate the crank until tar ith
rotate the crank until the pedal with your heel on it is in
the down position and the crank arm is parallel to the theat tube.
dealer to set the saddle for your optimal riding position and to show you how to make this adjustment. If you choose hat the clamp mechanism is clamping on the straight part the rails, and that you are using the recommended torque on the clampin

3. Saddle angle adjustment. Most people prefer a horizon tal saddle; but some riders like the saddle nose angled up
or down just a little. Your dealer can adjust saddle angle or down just a little. Your dealer can adjust sadadie angle
or teach you how to do it. If you choose to make your own saddle angle adjustment and you have a single bolt
saddle clamp on your seat post, it is critical that you loosen saddle clamp on your seat post, it is critical that you loose
the clamp bolt sufficiently to allow any serrations on the the champ boto sufficiently to allow any serrations on the
mechanism to disengage before changing the saddle's angle, and then that the serrations fully re-engage before
you tighten the clamp bolt to the recommended torque you tighten the clamp bolt to the reco
(see the manufacturer's instructions)
A WARNING: When making saddle angle adjustments with a single bolt saddle clamp, always check to of the clamp are not worn. Worn serrations on the clamp can allow the saddle to move, causing you to ose control and fall. Always tighten fasteners to the
correct torque. Bolts that are too tight can stretch and deform. Bolts. that a re too loose can move and fatigue.
Either mistake can lead to a sudden failure of the bolt, Either mistake can lead to a sudden
causing you to lose control and fall.

NOTE: If your bicycle is equipped with a suspension seat post, the suspension mechanism may require periodic
service or maintenance. Ask your dealer for recommended
service intervals for your suspension seat post.

Small changes in saddle position can have a substantial effect on performance and comfort. To find your best
saddle position, make only one adjustment at a time.

A WARNING: After any saddle adjustment, be sure tha the saddle adjusting mechanism is properly tightened
before riding. A loose saddle clamp or seat post clamp before riding. A loose saddle clamp or seat post clamp
can cause damage to the seat post, or can cause you can cause damage to the seat post, or can cause you
to lose control and fall. A correctly tightened saddle adjusting mechanism will allow no saddle movement in
any direction. Periodically check to make sure that the any direction. Periodically check to make sure that
saddle adjusting mechanism is properly tightened.
If, in spite of carefully adjusting the saddle height, tilt and f, in spite of carefully adjusting the saddle height, tilt and
fore-and-aft position, your saddle is still uncomfortable, you
may need a different saddle design. Saddles, like people, may need a different saddle design. Saddles, like people,
come in many different shapes, sizes and resilience. Your come in many different shapes, sizes and resilience. Your
dealer can help you select a saddle which, when correctly
adjusted for your body and riding style, will be comfortable
A warning:
A WARNING:
Some people
have claimed that have claimed that
extended riding wi
a saddle which is a saddle which is
incorrectly adjust incorrectly adjusted
or which does not support your pelvic
area correctly can
cause short-term cause short-term
or long-term injury
to nerves and blood

C) HANDLEBAR HEIGHT AND ANGL
Your bike is equipped
either with a "threadeither with a "thread-
less" stem (fig. 6), which clamps on to the outside ofthe steerer tube, or
with a "quill" stem (fie less stem (fig. 6), which
clamps on to the outside
of the steerer tube, or
with a a quill" sutem (fig.
7), which clamps inside
the steerer tube by way of
an expanding binder bolt.
If you aren't absolutely
sure which type of stem your bike has, ask your dealer.
If your bike has a "threadless" stem, If your bike has a "threadless" stem, your dealer may be
able to change handlebar height by moving height adjustment spacers from bebow the stem to above the stem, or
vice versa. Otherwise, you'll have to get a stem of different length or rise. Consult your have to get a stem of different
yourself, as it requires special knowledge. Ittempt to do this
your bike has a yourself, as it requires special knowledge. If your bike has a
"quill" stem, you can ask your dealer to adjust the handle-
bar height a bit by adjusting stem height. A quill stem has bar height, a bit by adjusting stem height. A quill stem has
an etched or stamped mark on its shaft which designates
the stem's "Minimum Insertion" or "Maximum extension." the stem's "Minimum Insertion" or "Maximum exte
This mark must not be visible above the headset.
A WARNING: A quill stem's Minimum Insertion Mark stem is extended beyond the Minimum Insertion Mark the stem may break or damage the fork's steerer tube, warnin: On
A WARNING: On some bicycles, changing the stem or stem height can affect the tension of the front brake
cable, locking the front brake or creating excess cable cable, locking the front brake or creating excess cab
slack which can make the front brake inoperable.
If the front brake pads move in towards the wheel
rim or out away from the wheel rim when the stem or stem height is changed, the brakes m
adjusted before you ride the bicycle.
Some bicycles are equipped with an adjustable angle
stem. If your bicycle has an adjustable angle stem, ask stem. If your bicycle has an adjustable angle stem, ask
your dealer to sow you how to adjust if. Do not attemp
to make the adjustment yourself, as changing stem and to make the adjustment yourself, as changing stem ang
may also require adjustments to the bicycle's controls.
A WARNING: Always tighten fasteners to the correct torque. Bolts that are too tight can stretch and defo
Bolts that are too loose can move and fatigue. Either mistake can lead to a sudden failure of the bolt, causing
you to lose control and fall.
Your dealer can also change the angle of the handlebar
A warning: An insufficiently tightened stem clamp bolt, handlebar clamp bolt or bar end extension clamping bolt may compromise steering action, which could caus you to lose control and fall. Place the front wheed
the bicycle between your legs and attempt to twist the handlebar/stem assembly. If you can twist the stem in
relation to the front wheel, turn the handlebars in relatio oo the stem, or turn the bar end extensions in relation to to the stem, or turn tole bar end extensions in relation
the handlebar, the bolts are insufficiently tightened.
D) CONTROL POSTION ADJUSTMENTS

The angle of the brake and shift control levers and their

 The angle of the brake and shift control levers and theirposition on the handlebars can be changed. Ask your position on the handlebars can be changed. Ask your
dealer to make the adjustments for you. If you choose to
make your own control lever angle adjustment, be sure to re-tighten the clamp fasteners to the recommended torque (see the manufacturer's instructions).
E) BRAKE REACH

Many bikes have brake levers which can be adjusted squeeze the brake levers, your dealer can either adjust or fit shorter reach brake levers.
A WARNING: The shorter the brake lever reach, the more full braking power can be applied within available brake lever travel. Brake lever travel insufficient to apply full braking power can result in loss of control,

4. TECHNICAL INFORMATION

it's important to your safety, performance and enjoyment you to ask your dealer how to do the things described in you section before you attempt them yourself, and that you
thave your dealer check your work before you ride the bike. If you have even the slightest doubt as to whether you understand something in this section of the Manual,
talk to your dealer. See also Appendix A, B and C. A. Wheels

Bicycle wheels are designed to be removable for easier transportation and for repair of a tire puncture. In most cases, the wheel axles are inserted into slots, called "dropouts" in the fork and frame, but some mountain
and road bikes use what is called a "through axle" whee mounting system.

If you have a mountain or road bike equipped with through axie front or rear wheels, make sure that your dealer has given you the manufacturer's instructions,
and follow those when installing or removing a and follow those when installing or removing a
through axe wheel. If you don't know what a through
axle is, ask your dealer.
Wheels are secured in one of three ways:

- A hollow axle with a shaft ("skewer") running through it
which has an adjustable tension nut on one end and

an over-center cam on the other (cam action system,
fig. 8 a \& b)
A hollow axle with a shaft ("skewer") running through which has a nut on one end and a fitting for a hex key, lock lever or other thind Hex nuts or hex key bolts which are threaded on to or into the hub axle (bolt-on wheel, fig. 10)

Your bicycle may be equipped with a different securing
method for the front wheel than for the rear wheel. Discuss the wheel securing method for your bicycle with
your deale
It is very important that you understand the type of
wheel securing method on your bicycle, that you how to secure the wheels correctly, and that you know how to apply the correct clamping force that safely
secures the wheel. Ask your dealer to instruct you in correct wheel removal and installation, and ask him to give you any available manufacturer's instructions. A WARNING: Riding with an improperly secured wheel can allow the wheel to wobble or fall off the
bicycle, which can cause serious injury or death. bicycle, which can cause serious
Therefore, it is essential that you:

1. Ask your dealer to help you make sure you know
ls safely
2. Understand and apply the correct technique for
clamping your wheel in place.
3. Each time, before you ride the bike, check that the
wheel is securely clamped. The clamping action of a correctly secured wheel must
emboss the surfaces of the dropouts.
4. Front Wheel Secondary Retention Devices

Most bicycles have front forks which utilize a secondary
wheel retention device to reduce the risk of the wheel Wheel retention device to reduce the risk af the wheel is incorrectly secured. Secondary retention devices are not a substitute
for correctly securing your front wheel. Secondary retention devices fall into two basic categories: a. The clip-on type is a part which the manufacturer adds
to the front wheel hub or front fork.
b. The integral type is molded, cast or machined into the Ask your dealer to explain the particular secondary reten-

A WARNING: Do not remove or disable the secondary reck-up for a critical adjustment. If the wheel is not secured correctly, the secondary retention device can reduce the risk of the wheel disengaging from the fork.
Removing or disabling the secondary retention device Removing or disabing the secondary retention devic devices are not a substitute for correctly securing you
wheel. Failure to properly secure the wheel can caus wheel. Failure to properly secure the wheel can cause the wheel to wobble or disengage, which could cause
you to lose control and fall, resulting in serious injury you death.
2. Wheels with cam action systems

There are currently two types of over-center cam wheel
retention mechanisms: the traditional over-center cam retention mechanisms: the traditional over-center cam
fig. 8 a) and the cam-and-cup system (fig (fig. 8 a) and the cam-and-cup system (fig. 8b). Both use
an over-center cam action to clamp the bike's wheel an over-center cam action to clamp the bike's wheel
in place. Your bicycle may have a cam-and-cup front
wheel retention system and a traditional rear wheel in place. Your bicycle may have a cam-and-cup front
wheel retention system and a traditional rear wheel cam
action system. action system.
a. Adjusting the traditional cam action mechanism (fig. 8a) The wheel hub is clamped in place by the force of the over-center cam pushing against one dropout and pulling the tension adjusting nut, by way of the skewer,
against the other dropout. The amount of clamping force against the other dropout. The amount of clamping forc
is controlled by the tension adjusting nut. Turning the is controled by the tension adjusting nut. Turning the
tension adjusting nut clockwise while keeping the cam lever from rotating increases clamping force, turning rotating reduces clamping force. Less than half a turn
of the tension adjusting nut can make the difference
between safe clamping force and unsafe clamping force
A. WARNING: The full force of the cam action is nut weeded to clamp the wheel securely. Holding the nut with the other hand until everything is as tight as you can get it will not clamp a cam action wheel safely Section, p. 16 .
b. Adjusting the cam-and-cup mechanism (fig. 8b) The cam-and-cup system on your front wheel will have Ask your dealer to check the adjustment every six months Do not use a cam-and-cup front wheel on any bicycle.
3. Removing and Installing wheels

A WARNING: If your bike is equipped with a hub brake such as a rear coaster brake, front or rear rear hub, do not attempt to or imove the wheel. The
removal and re-installation of most hub removal and re-installation of most hub brakes and
internal gear hubs requires special knowledge. Incor rect removal or assembly can result in brake or gear
failure, which can cause you to lose control and fall.
A CAUTION: If your bike has a disc brake, exercise have sharp edges, and both rotor and caliper can get
a. Removing a disk brake or rim brake Front Wheel (1) If your bike has rim brakes, disengage the brake's
quick-release mechanism to increase the clearance
between the tire and
fig. 11 through 15).
(2) If your bike has cam action front wheel retention, move the cam lever from the locked or CLOSED position to the OPEN position (figs. 8a $\&$ b). If your bike has
through bolt or bolt-on front wheel retention, loosen the fastener(s) a few turns counter-clockwise using an
appropriate wrench, lock key or the integral lever.
(3) If your front fork has a clip-on type secondary retention device, disengage it and go to step (4). If your
front fork has an integral secondary retention device front fork has an integral secondary retention device,
and a traditional cam action system (fig. 8a) loosen the and a traditional cam action system (fig. 8a) loosen the
tension adjusting nut enough to allow removing the whee
from the dropouts. If your front wheel uses a cam-andfrom the dropouts. If your front wheel uses a cam-and-
cup system, (fig. 8b) squeeze the cup and cam lever together while removing the wheel. No rotation
You may need to tap the top of the wheel with the palm
of your hand to release the wheel from the front fork. b. Installing a disk brake or rim brake Front Wheel

A CAUTION: If your bike is equipped with a front disk brake, be careful not to damage the disk, caliper or
brake pads when re-inserting the disk into to brake pads when re-inserting the disk into the caliper.
Never activate a disk brake's control lever unless the disk is correctly inserted in the caliper. See also
Section 4.c.
(1) If your bike has cam action front wheel retention,
move the cam lever so that it curves away from the wheel (fig. 8b). This is the OPEN position. If your bike has through bo
next step.
(2) With the steering fork facing forward, insert the whe
the top of the fork dropouts. The cam lever, if there is one, should be on rider's left side of the bicycle (fig. 8 a
\& b). If your bike has a clip-on type secondary retention \& b). If your bike
device, engage it.
(3) If you have a traditional cam action mechanism:
holding the cam lever in the ADJUST position with your right hand, tighten the tension adjusting nut with your left hand until it is finger tight against the fork dropout
(fig. 8 a). If you have a cam-and-cup system: the nut and (fig. 8a). If you have a cam-and-cup system: the nut and
cup (fig. 8b) will have snapped into the recessed area of the fork dropouts and no adjustment should be required. (4) While pushing the wheel firmly to the top of the slots in the fork dropouts,
wheel rim in the fork:
(a) With a cam action system, move the cam lever up-
wards and swing it into the CLOSED position (fig. 8a \& b) wards and swing it into the CLOSED position (fig. 8a
The lever should now be parallel to the fork blade and curved toward the wheel. To apply enough clamping force,
you should have to wrap your ingers around the fork blad you should have to wrap your fingers around the fork blade for leverage, and the le
the palm of your hand.
(b) With a through-bolt or bolt-on system, tighten
the fasteners to the torque specifications in the hub manufacturer's instructions.
NOTE: If, on a traditional cam action system, the lever cannot be pushed all the way to a position parallel to
the fork blade, return the lever to the OPEN position. Then turn the tension adjusting nut counterclockwise
one-quarter turn and try tightening the lever again.
(5) With a through-bolt or bolt-on system, tighten
the fasteners to the torque specifications in the hub manufacturer's instructions.

A WARNING: Securely clamping the wheel with a cam action retention device takes considerable force. your fingers around the fork blade for leverage, the
lever does not leave a clear imprint in the palm of yo lever does not leave a clear imprint in the palm of your emboss the surfaces of the drepouts, the tension is nut clockwise a quarter turn; then try again. See also (6) If you disengaged the brake quick-release mechanism
in 3. a. (1) above, re-engage it to restore correct brake
pad-to-rim clearance. (7) Spin core
(7) Spin the wheel to make sure that it is centered in the lever and make sure that the brakes are operating correctly,
c. Removing a disk brake or rim brake Rear Wheel
(1) If you have a multi-speed bike with a derailleur gear
system: shift the rear derailleur to high gear (the smallsystem: shift the rear derailleu
est, outermost rear sprocket).
If you have an internal gear rear hub, consult your dealer or the hub manufacturer's instructions before attempting
to remove the rear wheel. If you have a single-speed bike with rim or disk brake, go

$$
0
$$

(2) If your bike has rim brakes, disengage the brake's tween the wheel rim and the brake pads (see Section 4.C, system, pull the derailleur body
(4) With a cam action mechanism, move the quick-releas lever to the OPEN position (fig. 8b, . With a through bolt
or bolt on mechanism, loosen the fastener(s) with an appropriate wrench, lock lever or integral lever; then push propriate wrench, lock lever or integral lever; then push
the whel forward far enough to be able to remove the the wheel forward far enough
chain from the rear sprocket.
(5) Lift the rear wheel off the ground a few inches and remove it from the rear dropouts.
d. Installing a disk brake or rim brake Rear Wheel

CAUTION: If your bike is equipped with a rear disk brake pads when re-inserting the disk into the caliper. brake pads when re-inserting the disk
Never activate a disk brake's control le
disk is correctly inserted in the caliper. (1) With a cam action system, move the cam lever to the
OPEN position (see fig. 8 a b). The lever should be on the side of the wh
wheel sprockets.
(2) On a derailleur bike, make sure that the rear derailthe derailleur body back with your right hand. Put the the derailleur body back with your right hand. Put
chain on top of the smallest freewheel sprocket.
(3) On single-speed, remove the chain from the front sprocket, so that you have plenty of slack in the chain.
Put the chain on the rear wheel sprocket.
(4) Then, insert the wheel into the frame dropouts and
pull it all the way in to the dropouts.
Min
(5) On a single speed or an internal gear hub, replace dropouts so that it is straight in the frame and the chain
(6) With a cam action system, move the cam leve upwards and swing it into the CLOSED position (fig. 8 a
$\&$ b). The lever should now be parallel to the seat stay or chain stay and curved toward the wheel. To apply enough clamping force, you should have to wrap your fingers
around the fork blade for leverage, and the lever should around the fork blade for leverage, and the lever
leave a clear imprint in the palm of your hand.
(7) With a through-bolt or bolt-on system, tighten the
fasteners to the torque specifications in the hub manufacfasteners to the to
turer's instructions

NOTE: If, on a traditional cam action system, the lever cannot be pushed all the way to a position parallel to the seat stay or chain stay, return the lever to the OPEN
position. Then turn the tension adjusting nut counterposition. Then turn the tension a djusting nut counter-
clockwise one-quarter turn and try tightening the lever again.
A WARNING: Securely clamping the wheel with a
cam action retention device takes considerable force. cam action retention device takes considerable force.
If you can fully close the cam lever without wrapping
your fingers around the seat stay or chain stay for your fingers around the seat stay or chain stay for
leverage, the lever does not leave a clear imprint in the palm of your hand, and the serrations on the wheel fastener do not emboss the surfaces of the
dropouts, the tension is insufficient. Open the lever; dropouts, the tension is insufficient. Open the lever; turn; then try again.
this Section, p. 16 .
(8) If you disengaged the brake quick-release mechanism in 3. c. (2) above, re-engage it to restore correct brake
(9) Spin the wheel to make sure that it is centered in the
frame and clears the brake pads; then squeeze the brake lever and make sure that the brakes are operating correct:y
B. Seat Post Cam Action Clamp Some bikes are equipped with a cam action seat post
binder. The seat post cam action binder works exactly the traditional wheel cam action fastener (Section 4.A.2) While a cam action binder looks like a long bolt with a
lever on one end and a nut on the other, the binder us lever on one end and a nut on the other, the binder uses
an over-center cam action to firmly clamp the seat post (see fig. 8a).
A WARNING: Riding with an improperly tightened seat post can allow the saddle to turn or move
cause you to lose control and fall. Therefore:

1. Ask your dealer to help you make sure you know how to correctly clamp your seat post.
2. Understand and apply the correct technique for
clamping your seat post.
3. Before you ride the bike, first check that the seat post is securely clamped.
Adjusting the seat post cam action mechanism
The action of the cam squezes The action of the cam squeezes the seat collar around
the seat post to hold the seat post securely in place. The amount of clamping force is controlled by the tension adjusting nut. Turning the tension adjusting nut clockwise while keeping the cam lever from rotating increases
clamping force; turning it counterclockwise while keeping
the cam lever from rotating reduuces clamping force. Less the cam lever from rotating reduces clamping force. Less than half a turn of the tension adjusting nut can make the
difference between safe and unsafe clamping force
A warnal needed to clamp the sear po of the cam action is
 with the other hana until everything is as tiog

A WARNING: If you can fully close the cam lever without wrapping your fingers around the seat post or a frame tube for leverage, and the lever does not leave
a clear imprint in the palm of your hand, the tension is a clear imprint in the palm of your hand, the tension is
insufficient. Open the lever; turn the tension adjusting nut clockwise a quarter turn; then try again.

C) BRAKES

There are three general types of bicycle brakes: rim brakes, which operate by squeezing the wheel rim between
two brake pads; disc brakes, which operate by squeezing a hub-mounted disc between two brake pads; and interna hub brakes. All three can be operated by way of a handlebar mounted lever. On some models of bicycle, the internal
hub brake is operated by pedaling backwards. This is called a Coaster Brake and is described in Appendix C.

1. Widing with
2. Riding with improperly adjusted brakes, worn brake pads, or wheels on which the rim wear mark is visible
is dangerous and can result in serious injury or death. 2. Applying brakes too hard or too suddenly can lock
up a whel, which could cause you to lose control and up a wheel, which could cause you to lose control and may pitch the rider over the handlebars, which may result in serious injury or death.
3. Some bicycle brakes
result in serious injury or dea
4. Some bicycle brakes, such
as disc brakes (fig. 11) and

with these brakes and exercise
particular care when using them
5. Some bicycle brakes are
equipped with a brake force
modulator, a small, cylindrical
device through which the brak device through which the brak
control cable runs and which controi caber runs and which
is designed to provide a more
progressive application of brakin progressive application of brak
force. A modulator makes the
initial brake lever force more initial brake lever force more gentle, propressively increasing
force until full force is achieved. If your bike is equipped with a.
brake force modulator, take extran brake force modulator, take extra
care in becoming familiar with its care in becoming familiar with
performance characteristics. 5. Disc brakes can get extremely
hot with extended use. Be careful hot with extended use. Be carefu
not to touch a disc brake until it
has had plenty of time to cool. 6. See the brake manufacturer's
instructions for operation and car instructions for operation and care
of your brakes, and for when brake
pads must be replaced. If you pads must be replaced. If you
do not have the manufacturer's instructions, see your dealer or
contact the brake manufacturer. 7. If you are replacing worn or damaged parts, use only or damaged parts, use only
manufacturer-approved genuine
replacement parts.
6. Brake controls and features it's very important to your safety
that you learn and remember which that you learn and remember whic
brake lever controls which brake on your bike. Traditionally, in the
U.S. the right brake lever U.S. the right brake lever controls
the rear brake and the left brake lever controls the front
brake; but, to check how your bike's brakes are set up
this way, squeeze one brake leve and look to see which brake,
front or rear, engages. Now do the sam
lever.
Make sure that your hands can
reach and squeeze the brake reach and squeeze the brake levers comfortably. If your han
are too small to operate the are too small to operate the
levers comfortably, consult your
dealer before riding the bike. The lever reach may be adjustable; you may need a different brake lever design.
Most rim brakes have some form of quick-release
mechanism to all mechanism to allow the brake pads to clear the tire when release is in the open position, the brakes are inoperative
Ask your dealer to make sure that you understand the Ask your dealer to make sure that you understand the
way the brake quick release works on your bike (see figs.
$12,13,14 \& 15$) and check $12,13.14 \& 15$) and check each time to make sure both.
brakes work correctly before you get on the bike. 2. How brakes work The braking action of a bicycle is a function of the friction between the braking surfaces. To make sure that you
have maximum friction available, keep your wheel rims and brake pads or the disk rotor and caliper clean and and brake pads or the disk rotor and calis
free of dirt, lubricants, waxes or polishes. Brakes are designed to control your speed, not just to stop
the bike. Maximum braking force for each wheel occurs at
the point just before the wheel "locks up" (stops rotating) the point just before the wheel "locks up" (stops rotating)
and starts to skid. Once the tire skids, you actually lose and starts to skid. Once the tire skids, you actually lose most of your stopping force and all directional control.
You need to practice slowing and stopping smoothly

without locking up a wheel. The technique is called
progressive brake modulation. Instead of jerking the
brake lever to the position where you think youll brake lever to the position where you think yoult generate
appropriate braking force, squeeze the lever, progessively appropriate braking force, squeeze the lever, progressive
increasing the braking force. If you feel the wheel begin increasing the braking force. If you feel the wheel begin
to lock up, release pressure just a little to keep the whee rotating just short of lockup. It's important to develop a
feel for the amount of brake lever pressure required for feel for the amount of brake lever pressure required for
each wheel at different speeds and on different surfaces. each wheel at different speeds and on different surfaces. your bike and applying different amount
each brake lever, until the wheel locks.
When you apply one or both brakes, the bike begins to
slow, but your body wants to continue at the speed at slow, but your body wants to continue at the speed at which
it was going. This causes a transfer of weight to the front wheel (or, under heavy braking, around the front wheel hub, which could send you flying over the handlebars).
A wheel with more weight on it will accept greater brake
pressure before lockup; a wheel with less weight will lock up with less brake pressure. So, as you apply brakes and your weight is transferred forward, you need to shift your body tward the rear of the bike, to transfer weight back on to the rear wheel; and at the same time, you need to
both decrease rear braking and increase front braking force. This is even more important on descents, because orce. This is even more impo
Two keys to effective speed control and safe stopping are Two keys to effective speed control and safe stopping are
controlling wheel lockup and weight transfer. This weight
transfer is even more pronounced if your bike has a front transfer is even more pronounced if your bike has a front
suspension fork. Front suspension "dips" under braking, increasing the weight transfer (see also Section 4.F).
Practice braking and weight transfer techniques where Practice braking and weight transfer techniques wher
there is no traffic or other hazards and distractions. there is no traffic or other hazards and distractions.
Everything changes when you ride on loose surfaces or in
wet weather. It will take longer to stop on
or in wet weather. Tire adhesion is reduced, so the wheels with less brake force. Moisture or dirt on the brake pads reduces their ability to grip. The way to mainta
on loose or wet surfaces is to go more slowly.

D) SHIFTING GEARS

Your multi-speed bicycle will have a derailleur drivetrain, an internal gear hub drivet

1. How a derailleur drivetrain works

If your bicycle has a derailleur drivetrain, the gear
changing mechanism will have:
a rear cassette or freewheel sprocket cluster
a rear derailleur
usually a front derailleur
one or two shifters

- a drive chain
A) Shifting Gear

There are several different types and styles of shifting
controls: levers, twist grips, triggers, combination shift/ controls: levers, twist grips, triggers, combination shift/
brake controls and push-buttons. Ask your dealer to brake controls and push-buttons. Ask your dealer to
explain the type of shifting controls that are on your bike,
and to show you how they work. explain the type of shifting contr.
and to show you how they work.
The vocabulary of shifting can be pretty confusing.
A downshift is a shift to a "slower" gear, one which A downshift is a shift to a "slower" gear, one which is easier
to pedal. An upshift is a shift to a "faster", harder to pedal to pedal. An upshift is a shift to a "faster", harder to pedal
gear. What's confusing is that what's happening at the front gear. What's confusing is that what's happening at the front
derailleur is the opposite of what's happening at the rear deraileur is the opposite of what's happening at the rear
derailleur (for details, read the instructions on Shifting the
Rear Derailleur and Shifting the Front Deraill Rear Derailleur and Shifting the Front Derailleur below.). For
easier on a hill (make a downshift) in one of two ways: shift the chain down the gear "steps" to a smaller gea at the rear. So, at the rear gear cluster, what is called
a downshift looks like an upshift. The way to keep a downshift looks like an upshift. The way to keep
things straight is to remember that shifting the chain
in towards the centerline of the bike is for accelerating in towards the centerline of the bike is for accelerating
and climbing and is called a downshift. Moving the
chain out or away from the centerline of the bike is and climbing and is called a downshift. Moving the
chain out or away from the centerline of the bike is
for speed and is called an upshift Whet Chain out or away from the centerline of the bike is
for speed and is called an upshift. Whether upshifting
or downshifting, the bicycle deraileur shster or downshifting, the bicycle derailleur system design
requires that the drive chain be moving forward and be requires that the drive chain be moving forward and be
under at least some tension. A derailleur will shift only under at least some tension.
A cAution: Never move the shifter while pedaling backward, nor pedal backwards after having moved
the shifter. This could jam the
chain and cause serious damage chain and caus
to the bicycle.
B) Shifting the Rear Derailleur The rear derailleur is controlled by
the right shifter. The function of the right shifter. The function of
the rear derailleur is to move the the rear deraileur is to move the
drive chain from one gear sprocket to another. The smaller sprockets on the gear cluster produce higher
gear ratios. Pedaling in the higher gears requires greater pedaling
effort, but takes you a effort, but takes you a greater
distance with each revolution distance with each revolution
of the pedal cranks. The larger of the pedal cranks. The larger
sprockets produce lower gear
ratios. Using them requires less ratios. Using them requires less
pedaling effort, but takes you
a shorter distance with each pedal crank revolution.
Moving the chain from a smaller sprock cluster to a larger sprocket results in a downshift. Moving the chain from a larger sprocket to a smaller to move the chain from one sprocket to another, the rider must be pedaling forward
C) Shifting the Front Derailleu

The front derailleur, which is controlled by the left
shifter, shifts the chain between the larger and sm shifter, shifts the chain between the larger and smaller
chainrings. Shifting the chain onto a smaller chainring chainrings. Shifting the chain onto a smaller chainring makes pedaling easier (a downshift). Shifting to a
larger chainring makes pedaling harder (an upshift).
D) Which gear should I be in?

The combination of largest rear and smallest front gears [Fig. 16] is for the steepest hills. The smallest rear and largest front combination [Fig. 16 smallest
greatest speed. It is not necessary to shift gears greatest speed. It is not necessary to shift gears in
sequence. Instead, find the "starting gear" which is sequence. Instead, find the "starting gear" which is
right for your level of ability - a gear which is hard enough for quick acceleration but easy enough to let you start from a stop without wobbling - and experiment with upshifting and downshifting to get
a feel for the different gear combinations. At first, practice shifting where there are no obstacles, hazards
or other traffic, until you've built up your confidence. or other traffic, until you've built up your confidence
Learn not to use either the "smallest to smallest" Learn not to use either the "smallest to smallest" or "largest to largest" gear combinations because
they may cause unacceptable stress on the drive train. Learn to anticipate the stress on the drive
to a lower gear before the hill gets too steep. If you to a lower gear before the hill gets too steep. If ou
have difficulties with shifting, the problem could be have difficulties with shifting, the problem could be
mechanical adjustment. See your dealer for help.

A WARNING: Never shift a derailleur onto the largest smoothly. The derailleur may be out of adjustment and
the chain could jam, causing you to lose control and fall.
E) What if it won't shift gears?

If moving the shift control one click repeatedly fails to If moving the shift control one click repeatedly fails to
result in a smooth shift to the next gear chances are that result in a smooth shift to the next gear chances are th
the mechanism is out of adjustment. Take the bike to your dealer to have it adjusted
2. How an internal gear hub drivetrain works

If your bicycle has an internal gear hub drivetrain, the
gear changing mechanism will consist of:

- a 3, 5, 7, 8, 12 speed or possibly an infinitely variable
- a 3, 5, 7, 8, 12 s
internal gear hub
- one, or sometimes two shifters
- one or two control cables - one front sprocket called a chainring
- one front spro
a. Shifting internal gear hub gears

Shifting with an internal gear hub drivetrain is simply a
matter of moving the shifter to the indicated position for matter of moving the shifter to the indicated position for
the desired gear ratio. After you have moved the shifter to the desired gear ratio. After you have moved the shifter to
the gear position of your choice, ease the pressure on the b. Which gear should I be in?

The numerically lowest gear (1) is for the steepest hills.
The numerically largest gear is for the greatest speed.
is called a downshift. It is not necessary to shift gears in sequence. Instead, find the "starting gear" for the acceleration but easy enough ert wobbling - and experiment with upshifting and without wobbling - and experiment with upshifting and
downshifting to get a feel for the different gears. At first practice shiftio where there are no obstacles, hazards or
other traffic, until you've built up your confidence. Learn other traffic, until you've built up your confidence. Lear
to anticipate the need to shift, and shift to a lower gear to anticipate the need to shift, and shift to a lower gear
before the hill gets too steep.. If you have difficulties with
shifting, the problem could be mechanical adjustment. See shifting, the problem could be mechanical adjustment. See your dealer for help.
c. What if it won't shift gears?

If moving the shift control one click repeatedly fails to esult in a smooth shift to the next gear chances are that
the mechanism is out of adjustment. Take the bike to you the mechanism is out of ad
dealer to have it adjusted.

E) PEDALS

1. Toe Overlap is when your toe can touch the front wheel when you turn the handlebars to steer while a pedal is in
the forwardmost position. This is common on small-framed whe forwardmost position. This is common on on small-framed
thicy
bicycles, and is avoided by keeping the inside pedal up and bicycles, and is avoided by keeping the inside pedal up and
the outside pedal down when turning. On any bicycle, this
technique will also prevent the inside pedal from striking technique will also pre
A WARNING: Toe Overlap could cause you to lose contro and fall. Ask your dealer to help you determine if the combination of frame size, crank arm length, pedal design you have overlap or not, you must keep the inside pedal up
2. Some bicycles come equipped with pedals that have sharp and potentially dangerous surfaces. These surfaces
are designed to add safety by increasing adhesion between
the rider's shoe and the pedal. If your bicycle has this type of high-performance pedal, you must take extra care to avoid serious injury from the pedals' sharp surfaces. less aggressive pedal design, or chose to ride with shin pads.
Your dealer can show you a number of options and make suitable recommendations.
3. Toeclips and straps are a means to keep feet correctly
positioned and engaged with the pedals. The toeclip positioned and engaged with the pedals. The tooclip
positions the ball of the foot over the pedal spindle which positions the ball of the foot over the pedal spindle, which
gives maximum pedaling power. The toe strap, when gives maximum pedaling power. The toe strap, when
tightened, keeps the foot engaged throughout the rotation cycle of the pedal. While toeclips and straps give some
benefit with any kind of shoe, they work most effectively benefit with any kind of shoe, they work most effectively
with cycling shoes designed for use with toeclips. Your with cycling shoes designed for use with toeclips. Your
dealer can explain how toeclips and straps work. Shoes with deep treaded soles or welts which might make it
more difficult for you to insert or remove your foot should

$$
\begin{aligned}
& \text { more difficult for you to insert or ren } \\
& \text { not be used with toeclips and straps. }
\end{aligned}
$$

A WARNING: Getting into and out of pedals with toeclips and straps requires skill which can only be
acquired with practice. Until it becomes a reflex action,
the techique requires concentration which can distract the technique requires concentration which can distract
the rider's attention , ausing you to lose the rider's attention, causing you to lose control and fall. Practice the use of toeclips and straps where the
are no obstacles, hazards or traffic. Keep the straps are no obstacles, hazards or traffic. Keep the straps
loose, and don't tighten them until your technique and confidence in getting in and out of the pedals warran
it. Never ride in traffic with your toe straps tight. 4. Cips (solur 4. Clipless pedals (sometimes called "step-in pedals"),
are another means to keep feet securely in the correct aresition for maximum pedaling efficiency. They have a posite, called a "cleat,"' on the sole of the shoe, which click
plater into a mating spring-loaded fixture on the pedal. They
only engage or disengage with a very specific motion
which must be practiced until it becomes instinctive. Clipless pedals require shoes and cleats which are
compatible with the make and model pedal being used. Many clipless pedals are designed to allow the rider to adjust the a mount of force needed to engage or
disengage the foot. Follow the pedal manufacturer's instructions, or ask your dealer to show you how to make this adjustment. Use the easiest setting until engaging make sure that there is sufficient tension to prevent make sure that there is sufficient tension to pre
unintended release of your foot from the pedal.
A wARNING: Clipless pedals are intended for use
A WARNING: Clipless pedals are intended for use with shoes specifically made to fit them and are pedal. Do not use shoes which do not engage the
pedals correctly. pedals correctly.
Practice is required to learn to engage and disengage
the foot safely. Until engaging and disengaging the the foot safely. Until engaging and disengaging the
foot becomes a reflex action, the technique requires foot becomes a reflex action, the technique requires
concentration which can distract the rider's attention,
causing the rider to lose control and fall. Practice causing the rider to lose control and fall. Practice
engaging and disengaging clipless pedals in alace engaging and disengaging clipless pedals in a place
where there are no obstacles, hazards or traffic; and be sure to follow the pedal manufacturer's setup
and service instructions. If you do not have the
manufacturer's instructions, see your dealer or contact manufacturer's ins

F) BICYCLE SUSPENSION

Many bicycles are equipped with suspension systems, too many to deal with individually in this Manual. If your bicycle has a suspension system of any kind, be sure to
the manufactures
A warNivg: Failure to maintain, check and properly
adjust the suspension system may result in in suspension adjust the suspension system may result in suspension
malfunction, which may cause you to lose control and fall. If your bike has suspension, the increased speed you may
develop also increases your risk of iniury. For example, Lhen braking, the front off asuspended bike dips. You
would lose control and fall if you do not have experience Coutd lose control and fall if you do ot have experience
with this system. Learn to tanalle your suspension system
safely safely [see also Section 4.C]
WARNING: Changing suspension adjustment can
change the handling and braking characteristics change the han chang and brakin characteristics of your
bicycle. Never change suspension adjustment unless
 manufacturer's instructions and recommendations, and
always check for changes in the handling and braking always check for changes in the handling and braking
characteristics of the bicycle after a suspension adjus characteristics of the bicycle a fter a suspension adjust-
ment by taking a careful test ride in a hazard-free area. Suspension can increase control and comfort by allow-
ing the wheels to better follow the terrain. This enhance ing the wheels to to btter follow the terrain. This enhanced
capability may allow you to rire feaster; but you must
cot cont not confuse the enhanced capabailites of the bicycle with
your own capabilities as a a rider Increasing your skill will take time and practice. Proceed carefully yntil you have CAUTION: Not all bicycles can be safely retrofitted with some types of suspension systems. Before retrofiting
the suspension of any Kona bicycle, check with Kona to make sure that what you want too do is compatible with the
bicycle's design, and whether the warranty will be voided.
baicycle's design, and whether the warranty will be voided.
G) SERVICE NOTES FOR KONA DUAL SUSPENSION While Kona suspension systems are very torsionally rigid and require less maintenance than a single pivot
design, bearings and bushings will wear out. Bushing design, bearings and bushings will wear out. Bushing
kits and replacement rear stays are available from Kona Cartridge bearings give the suspension a smoother ride These bearings also require more attention than do cause frame damage. Regularly inspect the bearings and make sure that they allow the linkage to move freely.

H) TIRES AND TUBES

1. TIRES: Bicycle tires are available in many designs and specifications, ranging from general-purpose designs to or terrain conditions. If, once you've gained experience with your new bike, you feel that a different tire might better suit your riding needs, your d
select the most appropriate design.
The size, pressure
rating, and on som
high-performance
tires the specific tires the specific
recommended use,
are marked on the sidewalked of the the
Fige [see Fig. 17]. The part of
this information which
is most important to
you is Tire Pressure is most important to
you is Tire Pressure
But some whel
But some wheel rim
manufacturers also specity
maximum tire pressure
with a label on the rim.

A WARNING: Never inflate a tire beyond the the whem rimsure marke on the tire's sidewall or the wheel rim. If the maximum pressure rating for the wheel rim is lower than the maximum pressure shown
on the tire, always use the lower rating. Exceeding the recommended maximum pressure may blow the tire
off the rim, which could cause damage to the bike and off the rim, which could cause dar
injury to the rider and bystanders.
The best and safest way to inflate a bicycle tire to the
correct pressure is with a bicycle pump which has a b correct pressure
A WARNING: There is a safety risk in using gas
station air hoses or other air compressors. They are station air hoses or other air compressors. They are
not made for bicycle tires. They move a large volume of
air air very rapidly, and will raise the pressure in your tire
very rapidly, which could cause the tube to explode. Tire pressure is given either as maximum pressure or as a pressure range. How a tire performs under
different terrain or weather conditions depends largely different terrain or weather conditions depends largely
on tire pressure. Inflating the tire to near its maximum recommended pressure gives the lowest rolling resistance; but also produces the harshest ride.
High pressures work best on smooth, dry pavement. Very low pressures at the smooth, dry pavement. pressure range, give the best performance on smooth, slick terrain such as hard-packed clay, and on deep, loose surfaces such as deep, dry sand
Tire pressure that is too low for your weight and the
riding conditions can cause a puncture of the tube by riding conditions can cause a puncture of the tube by
allowing the tire to deform sufficiently to pinch the inner allowing the tire to deform sufficiently to pinch
tube between the rim and the riding surface.

A CAUTION: Pencil type automotive tire gauges consistent, accurate pressure readings. Instead, use a high quality dial gauge.
Ask your dealer to recommend the best tire pressure for Ask your dealer to recommend the best tire pressure for
the kind of riding you will most often do, and have the dealer inflate your tires to that pressure. Then, check inflation as described in Section 1.C so you'll know how correctly inflated tires should look and feel when you
don't have access to a gauge. Some tires may need to don't have access to a gauge. Some tires may need to
be brought up to pressure every week ortwo, so it is
important to check your tire pressures before every ride Some special high-performance tires have unidirectional treads: their tread pattern is designed to work better in one direction than in the other. The sidewall marking of a
unidirectional tire will have an arrow showing the correct unidirectional tire will have an arrow showing the correct
rotation direction. If your bike has unidirectional tires, be
sure that they are mounted to rotate in the correct direction, 2. TIRE VALVES: There are primarily two kinds of bicycle tire valves: The Schraeder Valve and the Presta
Valve. The bicycle pump you use must have the fitting Valve. The bicycle pump you use must have the
appropriate to the valve stems on your bicycle. The Schraeder valve [Fig. 18a] is like the valve on
a car tire. To inflate a Schraeder valve tire remove a ca valve cap and clamp the pump fitting onto the
the of the valve stem.
end let air out of end of the valve stem. To let air out of a Schraeder
valve, depress the pin in the end of the valve stem valve, depress the pin in the end of the valve stem.
with the end of a key or other appropriate object. The Presta valve [Fig. 18b] has a narrower
diameter and is only found on bicycle tires. diameter and is only found on bicycle tires. To
inflate a Presta valve tube using a Presta headed inflate a Presta valve tube using a Presta heade
bicycle pump, remove the valve cap; unscrew (counterclockwise) the valve stem lock nut;
and push down on the valve stem to free it up.

Then push the pump head on to the valve head, and
inflete. To infate a Prestav value with a s shriseeder rum fititing youll nead apresta adapter (aveliable at your
bike shop which scress on to the value stem once ouve freed up the valve. The adapter fits into the Schraeder pump fitting. Close the valve after inflation. To let air out of a Presta valve, open up the
valve stem lock nut and depress the valve stem
A warning: we highly recommend that you carry A sare inen tube when you ride your bike, unless

5. SERVICE

A WARNING: Technological advances have made bicccles and bicycle components more comporex, and
the pace of innovation is is increasing. It is is impossible for this manual to provide all the information required to properly repair and/or maintain your bicycle. In order to help minimize the chances of an accident and
possible injury, it in critical that you have any repair or possible injury, it is critical that you have any repair
maintenance which is not specifically described in this
manual performed by your dealer. Equally important manual performed by your dealer. Equally important be determined by everything from your riding style to geographic location. Consult your dealer for h
A WARNING: Many bicycle service and repair tasks require special knowledge and tools. Do not begin any
adjustments or service on your bicycle learned from
djur
adjustment or service may result in damage to the bivice may result in damage to
dent which can cause serious njury or death
If you want to learn to do major service and repair work
on your bike, you have three options: 1. Ask your dealer for copies of the 1. Ask your dealer for copies of the manufacturer's
installation and service instructions for the your bike, or contact the component manufacturer. 2. Ask your dealer to recommend a book on bicycle repair. 3. Ask your dealer about the availability of bicycle repair
courses in your area.

Regardless of which option you select, we recommend
that you ask your dealer to check the quality of your work that you ask your dealer to check the quality of your
the first time you work on something and before you
ride the bike, just to make sure that you did everythi ride the bike, just to make sure that you did everything
correctly. Since that will require the time of a mechanic, there may be a modest charge for this service. We also recommend that you ask your dealer for
guidance on what spare parts, such as inner tubes light bulbs, etc. it would be appropriate for you to have once you have learned how to replace such parts when

A) SERVICE INTERVALS

Some service and maintenance can and should be perSormed by the owner, and require no special tools or
knowledge beyond what is presented in this manual. The following are examples of the type of service you
should perform yourself. All other service, maintenance should perform yourself. All other service, maintenance and repair should be performed in a properly equipped
facility by a qualified bicycle mechanic using the correct
tools and procedures specified by the manufacturer.

1. Break-in Period: Your bike will last longer and work
better if you break it in before riding it hard. Contro cables and wheel spokes may stretch or "seat" when a new bike is first used and may require readjustment by your dealer
Your Mechanical Safety Check [Section 1.C] will help you Your Mechanical Safety check \&Section 1.C] will hel you identify some things that need readjustment. But even if
everything seems fine to you, it's best to take your bike
back to the dealer for evack to the dealer for a checkup. Dealers typically suggest
you bring the bike in for a 30 day checkup. Another way you bring the bike in for a 30 day checkup. Another way
to judge when it's time for the first checkup is to bring the to judge when it's time for the first checkup is to bring the
bike in after three to five hours of hard off-road use, or
about 10 to 15 hours of on-road or more casual off-road about 10 to 15 hours of on-road or more casual off-road
use. But if you think something is wrong with the bike,
take it to your dealer before riding it again.
2. Before every ride: Mechanical Safety Check [Section 1.C]
3. After every long or hard ride: if the bike has been exposed to water or grit; or at least every 100 miles:
Clean the bike and lightly lubricate the chain's rollers with a good quality bicycle chain lubricant. Wipe off excess
lubricant with a lint-free cloth. Lubrication is a function lubricant with a lint-free cloth. Lubrication is a function of
climate. Talk to your dealer about the best lubricants and climate. Talk to your dealer about the best lubricants a
the recommended lubrication frequency for your area. 4. After every long or hard ride or after every 10 to
20 hours of riding:

- Squeeze the front brake and rock the bike forward and back.
Everything feel solid? If you feel a clunk with each forward or backward movement of the bike, you probably have a loose
headset. Have your dealer check it. - Lift the front wheel off the ground and swing it from side to side. Feel smooth? If you feel a ny binding or roughness in the
steering, you may have a tight head set. Have your dealer
check it.
of the bike; then do the same with the other pedal. Anything
feel loose? If so, have your dealer check it.
Take a look at the brake pads. Starting to look worn or not hit-
ting the wheel rim squarely? Time to have the dealer adjust or ting the wheel
Carefully check the control cables and cable housings. Any rust?
Squeeze each adjoining pair of spokes on either side of each
wheel between your thumb and index finger. Do they all feel wheel between your thumb and index finger. Do they all feel
about the same? If any feel loose, have your dealer check the on and trueness.
Check the tires for excess wear, cuts or bruises. Have your ans
Check the wheel rims for excess wear, dings, dents and Check to make sure that all parts and accessories are still secure, and tighten any which are not.
Check the frame, particularly in the area around all tube
joints; the handlebars; the stem; and the seatpost for any deep scratches, cracks or discoloration. These are signs of stress-caused fatigue and indicate that a part is at the end of its useful life
Appendix B [p.38].
A WARNING: Like any mechanical device, a bicycle and materials and mechanisms to wear and strear at different rates and have different life cycles. If a component's life cycle is exceeded, the component can suddenly and catastrophically fail, causing serious injury or death to the rider. Scratches, cracks, fraying
and discoloration are signs of stress-caused fatigue
and indicate that a part is at the end of its useful life
and needs to be replaced. While the materials and
 product will last the term of the warranty. Product life is often related to the kind of riding you do and to the treatment to which you submit the bicycle. The bicycle's
warranty is not meant to suggest that the bicycle cannot warranty is not meant to suggest that the bicycle can
bicycle is covered subject to the terms of the warranty.
Please be sure to read Appendix B, Lifespan of Your Bike Please be sure to read Appendix B, Lifesp.
and its Components, starting on page 38.

5. As required: If either brake lever fails the Mechanic 5. As required: If either brake lever fails the Mechanical
Safety Check [Section 1.C], don't ride the bike. Have your dealer check the brakes.
If the chain won't shift smoothly and quietly from gear to
gear, the derailleur is out of adju stment. See your dealer. 6. Every 25 (hard off-road) to 50 (on-rod) hours of 6. Every 25 (hard off-road) to $\mathbf{5 0}$ (on-road) hours of
riding: Take your bike to your dealer for a complete checkup. B) IF YOUR BICYCLE SUSTAINS AN IMPACT B) IF YOUR BICYCLE SUSTAINS AN IMPACT
First, check yourself for injuries, and take care of them as First, check yourself for injuries, and take car
best you can. Seek medical help if necessary. Next, check your bike for damage. After any crash,
take your bike to your dealer for a thorough check. Carbon composite components, including fames, wheels, handlebars, stems, cranksets, brakes, etc. Which
sustained an impact must not be ridden until they sustained an impact must not be ridden until they
have been disassembled and thoroughly inspected by
qualified mechanic. See also Appendix B, Lifespan of Your qualified mechanic. See also Appen
Bike and its Components [p.38].
A WARNING: A crash or other impact can put extra-
stress fatigue can fail suddenly and catastrophically,
6. ABOUT YOUR KONA DEALER

Your dealer is here to help you get the bike and
accessories which are most appropriate for the kind accessories which are most appropriate for the kind of
riding that you intend to do; and to help you maintain riding that you intend to do; and to help you main
your equipment so that you can get the maximum
enjoyment from it. Your bike shop's staff has the enjoyment from it. Your bike shop's staff has the knowledge, tools. and experience to give you reliable advice and competent service. Your dealer carries the
products of a variety of manufacturers so that you can provucts of a variety of manufacturers so that you can
have the choices which best meet your needs and your budget.
But your dealer's staff can't make decisions for you,
nor can they assume responsibility for your lack of nor can they assume responsibility for your lack of
knowledge, experience, skill or common sense The can explain to you how something works, or what part or accessory will meet your special need, but they can't
know your questions or your needs unless you tell them. If you have a problem with your bike or your riding, talk stands your problem or question, and make sure that you really
A) COMFORT \& PERFORMANCE ACCESSORIES Once the bike fit (frame size, saddle position and angle, stem most important comfort accessory.
The comfort of a bicycle saddle depends much more on how The comfort of a bicycle saddle depends much more on ho
the saddle shape relates to the rider's body than on the the saddle shape relates to the rider's body than on the
thickness or material of the padding. Bicycle manufacturers select a saddle shape based on their best guess of what's
likely to be comfortable for most buyers of that particular
bicycle model. But that doesn't mean it's going to be the most comfortable shape for you. That's why your dealer
stocks saddles which offer a variety of shapes, padding, covering materials and prices. If the saddle on your new bike If you're planning to spend an hour or more at a time on you If you're planning to spend an hour or more at a time on your
bike, get a pair of cycling gloves. Their padded palms help
keep your hands from getting numb from the vibration of the keep your hands from getting numb from the vibration of the handlebars (the numbness, called carpal tun
can become quite painful if not taken care of), and they'll
provide some abrasion protection for your hands if you fall. Cycling shorts and cycling jerseys are both performance Cycling shorts and cycling jerseys are both performance
and comfort accessoriies. There are two kinds of cycling
shorts: the traditional skin-tight Lycra shorts and loose-fit
cycling shorts. Both are designed to reduce friction and cycling shorts. Both are designed to reduce friction and
chafing. The washable pad in the crotch of the shorts bo cafing. The washable pad in the crotch of the shorts both cushions and protects against chaing. Wear to avem without chafing. Also available are undergarments designed to reduce chafing when worn with regular street clothes. The
jerseys have pockets in the back, so that the things you jerseys have pockets in the back, so that the hings you
carry don't bang around when you ride. Many are made
of special materials with properties that improve riding of special materials with pron
comfort and performance.
It's important to drink plenty of liquids before and during exercise. A
longer ride.
Your dealer has many other comfort and performance
accessories that can increase your cycling enjoyment.
owner must deliver the fully assembled and complete Kona bicycle to an authorized Kona dealer, together with the
document identifying the Kona warranty card, or proof of document identifying the Kona warranty card, or proof of of sale or other dated proof of purchase document identifying the Kona bicycle by frame number. This Limited Warranty does not apply to normal wear and tear, nor to defects, malfunctions or failures that result from the abuse, neglect, improper maintenance
alteration, modification, accident, or misuse (including without
limitation bicycle racing, bicycle motocross, stunt bicycling, naked lieration, bicycle racing, bicicyle motoccrosse, stunt bicicyling, naked
limitycle riding, commercial use or rental use) of the Kona bicycle. THIS LIMITED WARRANTT IS THE OLLY EXPRESS OR LIMITED WARRANTY APPLI-
 TTED IN SCOPE AND DURATION IN ACCORDANCE WITH THIS LIMITED WAARRANTY.
 HIS LMITED WARRANTY GIVES YOU SPECIIC LEGAL RIGHTT YOU MAY ALSO
 TO PROVIICE. SOME STATES OR PROVINCES DO NOT ALLOW LIMITATIONS OR
EXCLUSION OF INCIDENTAL OR CONSEQUENTAL DAMAGES; SO, THE ABOVE EXCLUSIION OF INCIDENTAL OR CONSEQUENIAL DAMAGSS SOO, THE ABOOE
IMITTATONS AND EXCLUSIONS SET FORTH IN THIS LIMITED WARRANTY MAY NOT APPLY TO YOU
 OR OTHERWISE MODIIIED BY ANY KONA DEALER, AGENT QR EMPDOOEEE, AND
KONA DOES NOT ASSUME AAY LIABILITY OR MAKE ANY WARRANTY EXCEPT AS
STATED IN THE LIMITED WARRANTY.

WARRANTY ONLY APPLIES IN U.S.A. AND CANADA. SEE YOUR DEALER ONLY IF BICYCLE IS ASSEMBLED BY AN AUTHORIZED KONA DEALER.

This limited warranty is made only to the original owner of this
Kona bicycle purchased from an authorized Kona dealer, and it shal remain in force only as long as the original owner retains ownership
of the Kona bicycle This limited waranty is not transfar of the Kona bicycle. This limited warranty is not transferable. In

Appendix A
intended use of your bicycle
A WARNING: Understand your bike and its intended use. Choosing the wrong bicycle for your purpose
can be hazardous. Using your bike the wrong way is dangerous.
No one type of bicycle is suited for all purposes. Your
retailer can help you pick the "right tool for the job" and help you understand its limitations. There are many types of bicycles and many variations within each type. There are many types of mountain, road,
touring, cyclocross and tandem bicycles.
There are also bicycles that mix features. For example,
there are road/racing bikes with triple cranks. These bike there are road/racing bikes with triple cranks. These bike
have the low gearing of a touring bike, the quick handling of a racing bike, but are not well suited for carrying heavy
of
loads on a tour. For that purpose you want a touring bike.

Within each of type of bicycle, one can optimize for
certain purposes. Visit your bicycle shop and find
someone with expertise in the area that interests you
Do your own homework. Seemingly small changes Do your own homework. Seemingly small changes
such as the choice of tires can improve or diminish the sucformance of a bicycle for a certain purpose.
On the following pages, we generally outline the intended
Industry usage conditions are generalized and evolving.
consult your dealer about how you intend to use your bike.

High-Performance Road CONDITION 1
Bikes designed for riding on a paved
surface where the tires do not lose ground contact. roads only.
NOT INTENDED For off-road, cyclocross, NOT INTENDED For off-road, cyclocross,
or touring with racks or panniers. TRADE OFF Material use is optimized to deliver. both light weight and specific performance. You must understand
that (1) these types of bikes are intended to give an weight and specific performance. You must understan
that (1) these types of bikes are intended to give an
aggressive racer or competitive cyclist a performance aggressive racer or competitive cyclist a performance
advantage over a relatively short product life, (2) a less
aggressive rider will enjoy longer frame life, (3) you are advantage over a relatively short product life, (2) a less
aggressive rider will enjoy Ionger frame life, (3) you are
choosing light weight (shorter frame life) over more frame choosing light weight (shorter frame life) over more frame
weight and a longer frame life, (4) you are choosing light weight over more dent resistant or rugged frames that weigh more. All frames that are very light need frequent inspection. These frames are likely to be damaged or be a rugged workhorse. See also Appendix B.
Zing AL, Zing CR, Roadhouse, Penthouse, Paddy
Wagon 3, Paddy Wagon, Honky Tonk, Ti Esatto, Esatto DDL, Esatto D, Esatto Fast, Esatto

MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE*	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$275 / 125$	$10 / 4.5$	$285 / 129$

Seat Bag /Handlebar Bag Only General Purpo
CONDITION 2
or riding Condition 1 , plus smooth gravel roads and improved tires do not lose ground contact.
tide
INTENDED For dirt roads that are in good condition, and
bike paths.
NOT INTENDED For off-road or mountain bike use, or
for any kind for any kind of jumping. Some of these bikes have suspension features, but these feat
comfort, not off-road capability.
Some come with relatively wide tires that are well suited to gravel or dirt paths. Some come with relatively narrow tires that are best suited to faster riding on pavement. If you ride on gravel or dirt paths, carry heavier loads or want more tire durability talk to your dealer about wide
tires. Sutra Sutra, Sutra LTD, Ti Rove, Rove ST, Rove AL, Big Rove AL, Big Rove ST, Coco, Dew DL, Dew Plus, Dewey,
Dew, Ute, Humuhumu, Splice DL, Splice

MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$30 / 14$	$285 / 129$
for Touring or Trekking		
$300 / 136$	$55 / 25$	$355 / 161$

P
Cross-Country, Marathon, Hardtails Bikes designed for riding Conditions 1
and 2, plus rough trails, small and 2, plus rough trails, small obstacles,
and smooth technical areas, including and smooth technical areas, including contact with the ground may of tire jumping. All mountain bikes without rea
suspension are Condition 3, and so are some lightweight rear suspension models.
INTENDED For cross-country riding and racing which
ranges from mild to aggressive over intermediate terrain (e.g., hilly with small obstacles like roots, rocks, loose (e.g., , 1 illy with small obstacles like roots, rocks, loose
surfaces and hard pack and depressions). Cross-country and marathon equipment (tires, shocks, frames, drive trains) are light-weight, favoring nimble speed over brute
force. Suspension travel is reatively short since the bike orce. Suspension travel is relatively short since the bike is intended to move quickly on the ground.
NOT INTENDED For Hardcore Freeriding, Extreme Downhill, Dirt Jumping, Slopestyle, or very aggressive o extreme riding. No spending time in the air landing hard and hammering through obstacles.
TRADE OFF Cross-Country bikes are lighter, faster to ride uphill, and more nimble than All-Mountain bikes. CrossCountry and Marathon bikes trade off some ruggedness for pedalling efficiency and uphill speed
Hei Hei Race, Hei Hei DL Race, Hei Hei Trail, Hei Hei Cone, Explosif, Explosif Ti, Lava Dome, Mahuna, Cone, Explosiif, Explosif Ti, Lava Dome, Mahuna,
Mohala, Kahuna, Kahuna DL, Kahuna DDL, Unit,
Big Unit, Wo, Raijin, Hula, Makena
MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE*	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$5 / 2.3$	$305 / 138$
*Seat Bag Only		
Front suspension frames manufactured with original equipment seat stay and dropout rack mounts only		
$300 / 136$	$55 / 25$	$355 / 161$
5		

N
All Mountain
CONDITION
Bikes designed for riding Conditions 1 ,
2, and 3, plus rough technical areas 2, and 3, plus rough technical areas,
moderately sized obstacles, and smal jumps. All-Mountain bicycles are: (1) more
heavy duty than cross country bikes, country bike, allowing them to be ridden in more di
terain, over larger obstacles and moderate jumps, terrain, over larger obstacles and moderate jumps,
(4) intermediate in suspension travel and use components that fit the intermediate intended use, (5) cover a fairly wide range of intended use, and within this range are
models that are more or less heavy duty. Talk to your models that are more or less heavy duty. Ta
retailer about your needs and these models
NOT INTENDED For use in extreme forms of jumping/rid-
ing such as hardcore mountain, Freeriding, Downill, North

Shore, Dirt Jumping, Hucking etc. No large drop offs, jumps or launches (wooden structures, dirt embankments) requiring long
suspension travel or heavy duty components; and no spending suspension travel or heavy duty components; and no spend TRADE OFF All-Mountain bikes are more rugged tha
cross country bikes, for riding more difficult terrain cross country bikes, for riding more difficult terrain.
All-Mountain bikes are heavier and harder to ride uphill than cross country bikes. All-Mountain bikes are lighter, more nimble and easier to ride uphill than Freeride bikes.
All-Mountain bikes are not as rugged as Freeride bikes and All-Mountain bikes are not as rugged as freeride brate more extreme riding and terrain
Process 111 DL, Process 111, Process 134 Supreme Process 134 DL , Process 134, Process 153 DL , Process 153, Precept 150, Precept 130, Precept
120, Ti Honzo, Honzo AL DL, Honzo AL, Honzo 120, Ti Honzo, Honzo AL DL, Honzo AL,
Shred, Stinky 24, Shred 24, Shred 20

MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE*	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$5 / 2.3$	$305 / 138$

*Seat Bag $/$ Handlebar Bag Only

Gravity, Freeride, and Downhill
CONDITION 5
Bikes designed for jumping, hucking, high speeds, or aggressive riding on rough
surfaces, or landing on flat surfaces. surfaces, or landing on flat surfaces.
However, this type of riding is extremely
hazardous and hazardous and puts unpredictable forces
on a bicycle which may overload the on a bicycle which may overload the
frame, fork, or parts. If you choose

5frame, fork, or parts. If you choose to
5 terrain, you should take appropriat ride in Condition 5 terrain, you should take appropriate
safety precautions such as more frequent bike inspection and replacement of equipment. You should also wear
comprehensive safety equipment such as a full-face comprehensive safety equipm.
helmet, pads, and body armor.
INTENDED For ridis the
helmet, pads, and body armor.
INTENDED For riding that includes the most difficult
terrain that only very skilled riders she terrain that only very skilled riders should attempt.
Gravity, Freeride, and Dowhhill are terms which describ Gravity, Freeride, and Downhill are terms which describe "extreme" riding and the terms describing it are constantly evolving. Gravity, Freeride, and Downhill bikes are:
(1) heavier and have more suspension travel than
All-Mountan bikes, allowin them to be ridden in Al-Mountain bikes, allowing them to be ridden in more
difficult terrain, over larger obstacles and larger jumps, (2) the longest in suspension travel and use components that fit heavy duty intended use. While all that is true, there is no guarantee that extreme riding will not br
a Freeride bike. The terrain and type of riding that Freeride bikes are designed for is inherently dangerous. Appropriate equipment, such as a Freeride bike, does not
change this reality. In this kind of riding bad jod change this reality. In this kind of riding, bad judgment
bad luck, or riding beyond your capabilities can easily bad $\begin{aligned} & \text { result in ar accident, where you could be seriously }\end{aligned}$ injured, paralyzed or killed.
NOT INTENDED TO
Not INTENDED To be an excuse to try anything.

TRADE OFF Freeride bikes are more rugged than All-Mountain bikes, for riding more difficult terrain.
Freeride bikes are heavier and harder to ride uphill than All-Mountain bikes.
Supreme Operator, Operator, Operator 27.5,

MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$5 / 2.3$	$305 / 138$

Dirt Jump
CONDITION
Bikes designed for jumping, hucking, high speeds, or aggressive riding on roug surfaces, or landing on flat surfaces.
However, this type of riding is extremely hazardous and puts unpredictable forces
fork, or parts.
If you choose to ride in Condition 5 terrain, you should take
appropriate safety precautions such as more frequent bike appropriate safety precautions such as more frequent bike inspections and replacement of equipment. You should also
wear comprehensive safety equipment such as a full-face wear comprehensive safety equ
helmet, pads, and body armor.
helmet, pads, and body armor.
INTENDED, For man-made dirt jumps, ramps, skate parks
other predictable obstacles and terrain where riders ned other predictable obstacles and terrain where, riders need and use skill and bike control, rather than suspension. Dirt Jumping bikes are used much like heavy duty BMX bi
A Dirt Jumping bike does not give you skills to jump.

Read Section 2. F, p. 9
NOT INTENDED For terrain, drop offs or landings where large amounts of suspension travel are needed to help
absorb the shock of landing and help maintain control absorb the shock of landing and help maintain control.
TRADE OFF Dirt Jumping bikes are lighter and more nim ble than Freeride bikes, but they have no rear suspension and the suspension travel in the front is much shorter. Shonky AL
MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	0	$300 / 136$

Cons
Cyclo-cross
CONDITION 2
skes designed for riding Condition 1 , plus with moderate grades where the tires do not lose ground contact.
not
INTENDED For cyclo-cross riding, train-
ing and racing Cyclocross inver ing and racing. Cyclo-cross involves riding ing dirt or mud surfaces. Cyclo-cross bikes also work well for all weather rough road riding and commuting.
NOT INTENDED For off road or mountain bike us NOT INTENDED For off road or mountain bike use, or jumping. Cyclo-cross riders and racers dismount before
reaching an obstacle, carry their bike over the obstacle and then remount. Cyclo-cross bikes are not intended for mountain bike use. The relatively large road bike size wheels are faster
but not as strong.
Major Jake, Jake The Snake CR, Private Jake, Jake

MAXIMUM WEIGHT LIMIT

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$30 / 13.6$	$330 / 150$

2. Perspective

Today's high-performance bicycles require frequent and
careful inspection and service. In this Appendix we try to explain some underlying material science basics and
how they relate to your bicycle. We discuss some of the how they relate to your bicycle. We discuss some of the
trade-offs made in designing your bicyle and what you
can can expect from your bicycle; and we provide important,
basic guidelines on how to maintain and inspect it. We cannot teach you everything you need to know to prop-
erly inspect and service your bicycle; and that is why we erly inspect and service your bicycle; and that is why we
repeatedly urge you to take your bicycle to your dealer for
professional care and attention.

A WARNING: Frequent inspection of your bike is

 important. How often this more detailed inspection is
needed depends upon you. You, the rider/owner, have
control and knowledge of how often you use your bike control and knowledge of how often you use your bike
how hard you use it and where you use it. Because how hard you use it and where you use it. Because
your dealer cannot track your use, you must take re-
sponsibility for periodically bringing your bike to your sponsibility for periodically bringing your bike to your
dealer for inspection and service. Your dealer will help
you decide what frequency of inspection and service in you decide what frequency of inspection and service is
appropriate for how and where you use your bike. For apour safety, understanding and communication with your dealer, we urge you to read this Appendix in its
entirety. The materials used to make your bike deterentirety. The materials used to make your bike deter-
mine how and how frequently to inspect. Ignoring this
WARNING can lead to frame, fork or other component WARNING can lead to frame, fork or other componen
failure, which can result in serious injury or death.
A) UNDERSTANDING METALS

Steel is the traditional material for building bicycle frames.
bicycles, steel has been largely replaced by aluminum
and some titanium. The main factor driving this chang
interest by cycling enthusiasts in lighter bicycles.

Properties of Metals

Please understand that there is no simple statement that
can be made that characterizes the use of different metcan be made that characterizes the use of different met-
als for bicycles. What is true is how the metal chosen is als for bicycles. What is true is how the metal chosen is
applied is much more important than the material alone
One must look at the way the bike is designed tested One must look at the way the bike is designed, tested, manufactured, supported along with the character
the metal rather than seeking a simplistic answer. Metals vary widely in their resistance to corrosion. Steel
must be protected or rust will attack it. Aluminum and must be protected or rust will attack it. Aluminum and Titanium quickly develop an oxide film that protects the
metal from further corrosion. Both are therefore quite metar from further corrosum. Bor is not perfectly corro-
resistant to corrosion. Aluminum
sion resistant, and particular care must be used where it sion resistant, and particular care must be used where it
contacts other metals and galvanic corrosion can occur. Metals are comparatively ductile. Ductile means bending, Metals are comparatively ductile. Ductile means bending,
buckling and stretching before breaking. Generally speaking, of the common bicycle frame building materials steel is the
most ductile, titanium less ductile, followed by aluminum. Metals vary in density. Density is weight per unit of material. Steel weighs 7.8 grams $/ \mathrm{cm} 3$ (grams per cubic cen-
timeter), titanium 4.5 grams $/ \mathrm{cm} 3$, aluminum 2.75 grams/ timeter), titanium $4.5 \mathrm{grams} / \mathrm{cm3}$, aluminum 2.75 grams/
cm 3 . Contrast these numbers with carbon fiber composite
at 1.45 grams $/ \mathrm{cm} 3$. Metals are subject to fatigue. With enough cycles of use,
at high enough loads, metals will eventually develop at high enough loads, metals will eventually develop
cracks that lead to failure. It is very important that you Let's say you hit a curb, ditch, rock, car, another cyclist or
other object. At any speed above a fast walk, your body
will continue to move forward, momentum carrying you
over the front of the bike. You cannot and will not stay on the bike, and what happens to the frame, fork and other What should you expect from your metal frame? It depends on many complex factors, which is why we tell
you that crashworthiness cannot be a design criteria. With
that important note you that crashworthiness cannot be a design criteria. With
that important note, we can tell you that if the impact is
hard enough the fork or frame may be bent or bucke hard enough the fork or rame may be bent or buckled. On
a steel bike, the steel fork may be severely bent and the a steel bike, the steel fork may be severely bent and the
frame undamaged. Aluminum is less ductile than steel, but you can expect the fork and frame to be bent or buckled.
Hit harder and the top tube may be broken in tension and the down tube buckled. Hit harder and the top tube may be broken, the down tube buckled and broken, leaving the
head tube and fork separated from the main triangle. When a metal bike crashes, you will usually see some evi-
dence of this ductility in bent, buckled or folded metal.
It is now common for the main frame to be made of metal and the fork of carbon fiber. See Section B, Understanding
composites below. The relative ductility of metals and composites below. The relative ductility of metals and
the lack of ductility of carbon fiber means that in a the lack of ductility of carbon fiber means that in a crash
scenario you can expect some bending or bucking in the
metal but none in the carbon. Below some load the carbon fork may be intact even though the frame is damaged. The Basics of Metal Fatigue
Common sense tells us that nothing that is used lasts forever The worse the conditions you, and the harder you use it, and - on is the Fatigue is the term used to describe accumulated damage
to a part caused by repeated loading. To cause fatigue
damage, the load the part receives must be great enough.

A crude, often-used example is bending a paper clip
back and forth (repeated loading) until it breaks. This
simple definition will help simple definition will help you understand that fatigue has
nothing to do with time or age. A bicycle in a garage does nothing to do with time or age. A bicycle in a ga
not fatigue. Fatigue happens only through use.
So what kind of "damage" are we talking about? On So what kind of "damage" are we talking about? On a
microscopic level, a crack forms in a highly stressed area. microscopic level, a crack forms in a highly stressed area.
As the load is repeatedly applied, the crack grows. At some
point the crack becomes visible to the naked eye. Eventually point the crack becomes visible to the naked eye. Eventually
it becomes so large that the part is too weak to carry the it becomes so large that the part is too weak to carry the
load that it could carry without the crack. At that point ther
can be a complete and immediate failure of the part. One can design a part that is so strong that fatigue life is
nearly infinite. This requires a lot of material and a lot of weary infinit. This requires a lot of material and a lot of
wight. Any structure that must be light and strong will have a
finite fatigue life. Aircraft, race cars, motorcycles all have parts finite fatigue life. Aircraft, race cars, motorcycles all have parts
with finite fatigue lives. If you wanted a bicycle with with finitit fatigue lives. If you wanted a bicycle with an
fatigue life, it would weigh far more than any bicycle sold today. So we all make a tradeoff: the wonderful, lightweight
performance we want requires that we inspect the structure. In most cases a fatigue crack is not a defect. It is a sign that the part has be wof the end of its useful life. When your car tire wear down to the point that the tread bars are contacting the road, those tires are not defective. Those tires are worn out and the tread bar says "time for replacement.
When a metal part shows a fatigue crack, it is worn out. When a metal part shows a fatigue crac,
The crack says "time for replacement."

A FEW THINGS TO THink about	
- ONCE A CRACKS STARTS IT CAN GROW AND GROW FAST Think about the crack as forming a pathway to failure. This means that any crack is potentially dangerous and will only become more dangerous.	SIMPLE RULE 1: If you find a crack, replace the part.
- CORROSSION SPEEDS DAMAGE are in a corrosive environment. Think about the corrosive solution as further weakening and extending the crack.	SIMPLE RULE 2: Clean your bike, lubricate your bike, protect your bike from salt, remove any salt as soon as you can.
- STAINS AND DISCOLORATION CAN OCCUR NEAR A CRACK Such staining may be a warning sign that a crack exists.	SIMPLE RULE 3 : Inspect and investigate any staining to see if it is associated with a crack.
- SIGNIFICANT SCRATCHES, GOUGES, DENTS OR SCORING CREATE STARTING POINTS FOR CRACKS Think about the cut surface as a foca call such areas "stress risers," areas where the stress is increased) perhaps you have seen glass cut? then broke on the scored line then broke on the scored line.	SIMPLE RULE 4: Do not scratch, gouge or score any surface. If you do, pay frequent attention to this area or replace the part.
- SOME CRACKS (particularly larger ones) MAY MAKE CREAKING NOISE AS YOU RIDE Think about such a noise as a serious warning signal. Note that a wellmaintained bicycle will be ver and free of creaks and squeaks.	SIMPLE RULE 5: Investigate and find the source of any noise. It may not a be a crack, but whatever is causing the noise should be fixed promptly.

FACTORS THAT SHORTEN
PRODUCT LIFE:
PRODUCT THAT LENGTHEN

- Hard, harsh riding style - "Hhits," crashes, jumps, other - High mileage
- Higher body weight
- Stronger, more fit, more
aggressive rider Corrosive environment (we
salt air, winter road salt, salt air, winter road sat
accumulated sweat) - Presence of abrasive mud,
dirt, sand, soil in riding
environment
- Smooth, fluid riding style - No " "its," crashes, jumps, - Low mileage
- Lower body weight - Less aggressive rider
- Non-corrosive environment
(dry, salt-free air)
- Clean riding environment

Fatigue Is Not A Perfectly Predictable Science

Fatigue is not a perfectly predictable science, but here are
some eneral factors to help you and your dealer determine some general factors to help you and your dealer determine
how often your bicycle should be inspected. The more you fit the "shorten product life" profile, the more frequent your need to inspect. The more you fit the "lengthen produ
life" profile, the less frequent your need to inspect.
A WARNING: Do not ride a bicycle or component with
A WARNING: Do not ride a bicycle or component with cracked frame, fork or component could lead to com-
plete failure, with risk of serious injury or death.
B) UNDERSTANDING COMPOSITES

All riders must understand a fundamental reality
of composites. Composite materials constructed of carbon fibers are strong and light, but when crashed or
overloaded, carbon fibers do not bend, they break.

What Are Composites
The term "composites" refers to the fact that a part or als. You've heard the term "carbon fiber bike." This really als. You've heard the ter
means "composite bike.
Carbon fiber composites are typically a strong, light fiber Carbon fiber composites are typically a strong, light fiber
in a matrix of plastic, molded to form a shape. Carbon composites are light relative to metals. Steel weighs 7.8 grams $/ \mathrm{cm} 3$ (grams per cubic centimeter), titanium 4.5
grams $/ \mathrm{cm} 3$, aluminum 2.75 grams $/ \mathrm{cm} 3$. Contrast these grams $/ \mathrm{cm} 3$, aluminum 2.75 grams $/ \mathrm{cm} 3$. Contrast these The composites with the best strength-to-weight ratios are made of carbon fiber in a matrix of epoxy plastic. The
epoxy matrix bonds the carbon fibers together, transfers epoxy matrix bonds the carbon fibers together, transfers
load to other fibers, and provides a smooth outer surface. The carbon fibers are the "ske
Why Are Composites Used?
Why Are Composites Used?
Unlike metals, which have uniform properties in all direc-
tions (engineers call this isotropic), carbon fibers can be Unike metals, which have uniform properties in all direc-
tions (engineers call this isotropic), carbon fibers can be
placed in specificic orientations to optimize the structure for placed in specific orientations to optimize the structure for
particular loads. The choice of where to place the carbon particular loads. The choice of where to place the carbon fibers gives engineers a powerful tool to create strong,
light bicycles. Engineers may also orient fibers to suit other goals such as comfort and vibration damping. Car-
bon fiber composites are very corrosion resistant bon fiber composites are very corrosion resistant, much
more so than most metals. Think about carbon fiber or more so than most metals. Think about carbon fiber or
fiberglass boats. Carbon fiber materials have a very high fiberglass boats. Carbon
strength-to-weight ratio.
What Are The Limits Of Composites?
Well designed "composite" or carbon fiber bicycles and components have long fatigue lives, usually better than
their metal equivalents. While fatigue life is an advantage of carbon fiber, you must still

Carbon fiber composites are not ductile. Once a carbon structure is overloaded, it will not bend; it will break. At
and near the break, there will be rough, sharp edges and
maybe delamination of carbon fiber or carbon fiber fabric layers. There will be no bending, buckling, or stretching.
If You Hit Something Or Have A Crash, What Can layers. The win be no bend
If You Hit Something Or A A Crash, What
You Expect From Your Carbon Fiber Bike? Let's say you hit a curb, ditch, rock, car, other cyclist or
other object. At any speed above a fast walk, your body other object. At any speed above a fast walk, your body
will continue to move forward, the momentum carrying will continue to move forward, the momentum carrying
you over the front of the bike. You cannot and will not stay
on the bike and what happens to the frame fork and other on the bike and what happens to the frame fork and other
components is irrelevant to what happens to your body. What should you expect from your carbon frame? It
depends on many complex factors, which is why we depends on many complex factors, which is why we tell you that crash worthiness cannot be a design criteria.
With that important note, we can tell you that if the impact With that important note, we can tell you that if the in
is hard enough, the fork or frame may be completely broken. Note the significant difference in behavior between in this Appendix, Even if the carben frame was twice in this Appendix. Even if the carbon frame was twice
as strong as a metal frame, once the carbon frame is as strong as a metal frame, once the carbon frame is
overloaded it will not bend, it will break completely.
Inspection of Composite Frame, Fork, \& Components Cracks: Inspect for cracks, broken, or splintered areas.
Any crack is serious. Do not ride any bicycle or compoAny crack is serious. Do not ride
nent that has a crack of any size.
Delamination: Delamination is serious damage. means that the layers of fabric are no longer bonded together. Do not ride any bicycle or component that has any
delamination. These are some delamination - A cloudy or white area. This kind of area looks different
from the ordinary undamaged areas. Undamaged areas will look glassy, shiny, or "deep," as if one was looking into a clear liquid. Delaminated areas will look opaque
and cloudy. and cloudy.
or deformed shape. If delamination occurs, the surface shape may change. The surface may have a bump, a bulge, soft spot, or not be smooth and fair. A difference in sound when tapping the surface. If you gently tap the surface of an undamaged composite yound. If you then tap a delaminated area, you will hear
sound a different sound, usually duller, less sharp.
Unusual Noises: Either a crack or delamination can cause creaking noises while riding. Think about such
a noise as a serious warning signal. A well maintained bicycle will be very quiet and free of creaks and squeaks. Investigate and find the source of any noise. It may not be a crack or delamination, but w
noise must be fixed before riding

A WARNING: Do not ride a bicycle or component with any delamination or crack. Riding a delaminated or

 cracked frame, fork or other component could lead tocomplete failure, with risk of serious injury or death.
C) UNDERSTANDING COMPONENTS

It is often necessary to remove and disassemble components in order to properly and carefully inspect
them. This is a job for a professional bicycle mechanic them. This is a job for a professional bicycle mechanic
with the special tools, skills and experience to inspect with the special tools, skills and experience to inspect and
service today's high-tech high-performance bicycles and service today's high
their components.
Aftermarket "Super Light" components Think carefully about your rider profile as outlined above The more you fit the "shorten product life" profile,
the more you must question the use of super light components. The more you it the "engthen product may be suitable for you Discuss your needs and your may be suitable for you. Discuss your needs and your seriously and understand that you are responsible for the
changes. changes.
A useful slogan to discuss with your dealer if you contemplate
changing components is "Strong, Light, Cheap - pick two."
Original Equipment components
Bicycle and component manufacturers tests the fatigue life of the components that are original equipment on your bike. This means that they have met test criteria and
have reasonable fatigue life. It does not mean that the have reasonable fatigue life. If does not mean that.

Appendix C

Coaster Brake

1. How the coaster brake works

The coaster brake is a sealed mechanism which is a part of the bicycle's rear wheel hub. The brake is activated by reversing the rotation of the pedal cranks (see fig. 5). Start with the pedal cranks in a nearly horizontal position, with the front pedal in about the 4 o'clock position, and apply downward foot pressure on the pedal that is to the rear. About $1 / 8$ turn rotation will activate the brake. The more downward pressure you apply, the more braking force, up to the point where the rear wheel stops rotating and begins to skid.

. WARNING: Before riding, make sure that the brake is

 working properly. If it is not working properly, have the bicycle checked by your dealer before you ride it.A WARNING: If your bike has only a coaster brake, ride conservatively. A single rear brake does not have the stopping power of front-and-rear brake systems.

2. Adjusting your coaster brake

Coaster brake service and adjustment requires special tools and special knowledge. Do not attempt to disassemble or service your coaster brake. Take the bicycle to your dealer for coaster brake service.

